Skip to main content

Advertisement

Log in

Evaluation of global Arsenic remediation research: adverse effects on human health

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Arsenic (As) is one of the human carcinogens with a global peril to human health through direct or indirect exposure to contaminated water, food, air and skin contact. As a result, research on arsenic remediation has surged. However, no report evaluating the trends of studies on the subject has been documented. Therefore, the present study was conducted to examine global research trends on arsenic removal and remediation. Web of Science and Scopus were explored to retrieve published papers on the subject between 1929 and 2020. In all, 2605 articles were published within the survey period, with annual mean and growth rate of 28.63 and 11.11%, respectively. Research productivity raised consistently and peaked in 2019 (9.9%) and 2020 (9.2%). China (n = 574, 22%) ranked first followed by India (n = 361, 10%) and the United States (n = 239, 9.2%). The top 20 productive authors published articles between 19 and 49 with total citations of 442 to 511. The highest recurrent Keywords were arsenic (n = 992, 38.08%), adsorption (n = 519, 19.2%) and arsenic removal (n = 435, 16.72%). This study revealed an improved global research on Arsenic removal with greater research outputs from both developed and developing countries; however, the global collaboration appears to be low (collaboration index of 2.5), hence, the policymakers, governments and researchers should encourage international collaborations and establish research programs that can monitor arsenic contamination globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad S, Cullen KKT, WR, (2000) Arsenic species that cause release of iron from ferritin and generation of activated oxygen. Arch Biochem Biophys 382:195–202

    Article  CAS  Google Scholar 

  • Alka S, Shahir S, Ibrahim N, Ndejiko MJ, Vo DVN, Abd Manan F (2021) Arsenic removal technologies and future trends: a mini review. J Clean Prod 278:123805. https://doi.org/10.1016/j.jclepro.2020.123805

    Article  CAS  Google Scholar 

  • Al-Makishah NH, Taleb MA, Barakat MA (2020) Arsenic bioaccumulation in arsenic-contaminated soil: a review. Chem Pap 74(9):2743–2757

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Aposhian HV, Zheng BS, Aposhian MM, Le XC, Cebrian ME, Cullen W, Zakharyan RA, Ma HS, Dart RC, Cheng Z, Andrewes P, Yip L, O’Malley GF, Maiorino RM, Van Voorhies W, Healy SM, Titcomb A (2000) DMPS Arsenic challenge test II. modulation of arsenic species, including monomethylarsonous acid (MMA(III)), excreted in human urine. Toxicol Appl Pharmacol 65:74–83

    Article  Google Scholar 

  • Aria M, Cuccurullo C (2017) Bibliometrix: An R-tool for comprehensive science mapping analysis. J Informet 11(4):959–975

    Article  Google Scholar 

  • Asere TG, Stevens CV, Du Laing G (2019) Use of (modified) natural adsorbents for arsenic remediation: a review. Sci Total Environ 676:706–720

    Article  CAS  Google Scholar 

  • Baek S, Yoon DY, Lim KJ, Cho YK, Seo YL, Yun, E (2018) The most downloaded and most cited articles in radiology journals: a comparative bibliometric analysis. Eur Radiol https://doi.org/10.1007/S00330- 018–5423–1

  • Bertolero F, Pozzi G, Sabbioni E, Saffiotti U (1987) Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. Carcinogenesis 8(6): 803–808. https://doi.org/10.1093/carci n/8.6.803

  • Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G (2007) Arsenic in the environment: biology and chemistry. Sci Total Environ 379:109–120

    Article  CAS  Google Scholar 

  • Bott DM, Hargens LL (1991) Are sociologists’ publications uncited? Citation rates of journal articles, chapters, and books. Am Sociol 22(2):147–158

    Article  Google Scholar 

  • Cabral BP, Fonseca MDGD, Mota FB (2018) The recent landscape of cancer research worldwide: a bibliometric and network analysis. Oncotarget 9(55):30474

    Article  Google Scholar 

  • Callon M, Courtial JP, Turner WA, Bauin S (1983) From Translations to Problematic Networks: an Introduction to Co-Word Analysis Information (international Social Science Council) 22(2):191–235

    Google Scholar 

  • Cañas-Guerrero I, Mazarrón FR, Pou-Merina A, Calleja-Perucho C, Díaz-Rubio G (2013) Bibliometric analysis of research activity in the “agronomy” category from the web of science 1997–2011. Eur J Agron 50:19–28

    Article  Google Scholar 

  • Chakraborty S, Bhar K, Saha S, Chakrabarti R, Pal A, Siddhanta A (2014) Novel arsenic nanoparticles are more effective and less toxic than As (III) to inhibit extracellular and intracellular proliferation of Leishmania donovani. J Parasitol Res. https://doi.org/10.1155/2014/187640

    Article  Google Scholar 

  • Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4(7):3979–3986

    Article  CAS  Google Scholar 

  • Chen Y, Su HJ, Guo YL, Hsueh Y, Smith TJ, Ryan LM, Lee M, Christiani DC (2003a) Arsenic methylation and bladder cancer risk in Taiwan. Cancer Causes Control 14:303–310

    Article  Google Scholar 

  • Chen YS, Guo YL, Su HJ, Hsueh Y, Smith TJ, Ryan LM, Lee M, Chao S, Lee JY, Christiani DC (2003b) Arsenic methylation and skin cancer risk in southwestern Taiwan. J Occup Environ Med 45:241–248. https://doi.org/10.1097/01.jom.0000058336.05741.e8

    Article  CAS  Google Scholar 

  • Chen P, Li J, Wang HY, Zheng RL, Sun GX (2017) Evaluation of bioaugmentation and biostimulation on arsenic remediation in soil through biovolatilization. Environ Sci Pollut Res 24(27):21739–21749. https://doi.org/10.1007/s11356-017-9816-5

    Article  CAS  Google Scholar 

  • Chen X, Yu G, Cheng G, Hao T (2019) Research topics, author profiles, and collaboration networks in the top-ranked journal on educational technology over the past 40 years: a bibliometric analysis. Journal of Computer Education 6(4):563–585

    Article  Google Scholar 

  • Choong TS, Chuah TG, Robiah Y, Koay FG, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217(1–3):139–166

    Article  CAS  Google Scholar 

  • Chou WC, Jie C, Kenedy AA, Jones RJ, Trush MA, Dang CV (2004) Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci USA 13:4578–4583

    Article  Google Scholar 

  • Clewell HJ, Gentry PR, Barton HA, Shipp AM, Yager JW, Andersen ME (1999) Requirements for a biologically realistic cancer risk assessment for inorganic arsenic. Int J Toxicol 18:131–147

    Article  CAS  Google Scholar 

  • Colognato R, Coppede F, Ponti J, Sabbioni E, Migliore L (2007) Genotoxicity induced by arsenic compounds in peripheral human lymphocytes analysed by cytokinesis-block micronucleus assay. Mutagenesis 22(4):255–261

    Article  CAS  Google Scholar 

  • Coulter N, Monarch I, Konda S (1998) Software engineering as seen through its research literature: a study in co-word analysis. J Am Soc Inform Sci 49(13):1206–1223

    Article  Google Scholar 

  • Criscuoli A, Figoli A (2019) Pressure-driven and thermally driven membrane operations for the treatment of arsenic-contaminated waters: a comparison. J Hazard Mater 370:147–155

    Article  CAS  Google Scholar 

  • de Souza TD, Borges AC, Braga AF, Veloso RW, de Matos AT (2019) Phytoremediation of arsenic-contaminated water by Lemna Valdiviana: an optimization study. Chemosphere 234:402–408

    Article  CAS  Google Scholar 

  • Ekundayo TC, Okoh AI (2018) A global bibliometric analysis of Plesiomonas-related research (1990–2017). PloSone. https://doi.org/10.1371/journal.pone.0207655

    Article  Google Scholar 

  • Flora SJ, Chouhan S, Kannan GM, Mittal M, Swarnkar H (2008) Combined administration of taurine and monoisoamyl DMSA protects arsenic induced oxidative injury in rats. Oxid Med Cell Longev 1(1):39–45

    Article  Google Scholar 

  • Fricke R, Uibel S, Klingelhoefer D, Groneberg DA (2013) Influenza: a scientometric and density-equalizing analysis. BMC Infect Dis. https://doi.org/10.1186/1471-2334-13-454 (PMID: 24079616)

    Article  Google Scholar 

  • Geaney F, Scutaru C, Kelly C, Glynn RW, Perry IJ (2015) Type 2 diabetes research yield, 1951–2012 Bibliometrics analysis and density-equalizing mapping. PLoS ONE. https://doi.org/10.1371/journal.pone.0133009 (PMID: 26208117)

    Article  Google Scholar 

  • Gomez-Caminero A, Howe P, Hughes M, Kenyon E, Lewis DR, Moore M, Ng JC, Aitio A, Becking G (2001) Environmental health criteria 224 Arsenic and arsenic compounds report. World Health Organization. International programme on chemical safety, Geneva. 521 [online]. http://apps.who.int/iris/bitstream/handle/10665/42366/WHO_EHC_224.pdf;jsessionid=B43D571640FAEECCF81FF1620F90B523?sequence=1 (Accessed October 19, 2021)

  • Gul I, Le W, Jie Z, Ruiqin F, Bilal M, Tang L (2021) Recent advances on engineered enzyme-conjugated biosensing modalities and devices for halogenated compounds. TrAC, Trends Anal Chem. https://doi.org/10.1016/j.trac.2020.116145

    Article  Google Scholar 

  • Guozhu M, Haoqiong H, Xi L, John C, Ning H (2021) A bibliometric analysis of industrial wastewater treatments from 1998 to 2019. Environ Pollut 275:115785. https://doi.org/10.1016/j.envpol.2020.115785

    Article  CAS  Google Scholar 

  • Hare V, Chowdhary P, Kumar B, Sharma DC, Baghel VS (2019) Arsenic toxicity and its remediation strategies for fighting the environmental threat. In Emerging and eco-friendly approaches for waste management (143–170). Springer, Singapore.

  • Hei TK, Filipic M (2004) Role of oxidative damage in the genotoxicity of arsenic. Free Radical Biol Med 37(5):574–581

    Article  CAS  Google Scholar 

  • Ho YS (2007) Bibliometric analysis of adsorption technology in environmental science. J Environ Prot Sci 1(1):1–11

    CAS  Google Scholar 

  • Hopenhayn C, Huang B, Christian J, Peralta C, Ferreccio C, Atallah R, Kalman D (2003) Profile of urinary arsenic metabolites during pregnancy. Environ Health Perspect 111(16):1888–1891. https://doi.org/10.1289/ehp.6254

    Article  CAS  Google Scholar 

  • IARC (2004). Volume 84. Some drinking water disinfectants and contaminants, including arsenic. international agency for research on cancer, Lyon, France.

  • Irshad S, Xie Z, Wang J, Nawaz A, Luo Y, Wang Y, Mehmood S (2020) Indigenous strain Bacillus XZM assisted phytoremediation and detoxification of arsenic in Vallisneria denseserrulata. J Hazardous Mater 381:120903. https://doi.org/10.1016/j.jhazmat.2019.120903

    Article  CAS  Google Scholar 

  • Irshad S, Xie Z, Mehmood S, Nawaz A, Ditta A, Mahmood Q (2021). Insights into conventional and recent technologies for arsenic bioremediation: a systematic review. Environ Sci Pollu Res1–23. https://doi.org/10.1007/s11356-021-12487-8

  • Jacobs N (2002) Co-term network analysis as a means of describing the information landscapes of knowledge communities across sectors. J Document 58(5):548–562

    Article  Google Scholar 

  • Jang Y, Somanna Y, Kim H (2016) Source, distribution, toxicity and remediation of arsenic in the environment – a review. Int J of Appl Environ Sci 11(2):559–581

    Google Scholar 

  • Jaward FM, Farrar NJ, Harner T, Sweetman AJ, Jones KC (2004) Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe. Environ Sci Technol 38(1):34–41

    Article  CAS  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298

    Article  CAS  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Tech 40(6):2045–2050. https://doi.org/10.1021/es0520924

    Article  CAS  Google Scholar 

  • Kanwar VS, Sharma A, Srivastav AL, Rani L (2020) Phytoremediation of toxic metals present in soil and water environment: a critical review. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-10713-3

    Article  Google Scholar 

  • Kim TS, Jeong DW, Byung YY, Ick YK (2002) Dysfunction of rat liver mitochondria by selenite: induction of mitochondrial permeability transition through thiol-oxidation. Biochem Biophys Res Commun 294(5):1130–1137

    Article  CAS  Google Scholar 

  • Kim Y, Kim C, Choi I, Rengaraj S, Yi J (2004) Arsenic removal using mesoporous alumina prepared via a templating method. Environ Sci Tech 38(3):924–931. https://doi.org/10.1021/es0346431

    Article  CAS  Google Scholar 

  • Kim EH, Sohn S, Kwon HJ, Kim SU, Kim MJ, Choi LSJ, KS, (2007) Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Can Res 67(13):6314–6324

    Article  CAS  Google Scholar 

  • Kumari B, Kumar V, Sinha AK, Ahsan J, Ghosh AK, Wang H, DeBoeck G (2017) Toxicology of arsenic in fish and aquatic systems. Environ Chem Lett 15(1):43–64

    Article  CAS  Google Scholar 

  • Lai RY, Wang X, Li RA, Yu, (2008) Effect of selenium and arsenic on oxidative stress, DNA oxidative damage and repair in HepG2 cells. Wei Sheng Yan Jiu 37(6):645–648

    Google Scholar 

  • Liu Y, Zheng BH, Fu Q, Meng W, Wang YY (2009) Risk assessment and management of arsenic in source water in China. J Hazardous Mater 170:729–734

    Article  CAS  Google Scholar 

  • Lu J, Jiang C, Kaeck M, Ganther H, Vadhanavikit S, Clement IP, Thompson H (1995) Dissociation of the genotoxic and growth inhibitory effects of selenium. Biochem Pharmacol 50(2):213–219

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  Google Scholar 

  • Mao K, Zhang H, Wang Z, Cao H, Zhang K, Li X, Yang Z (2020) Nanomaterial-based aptamer sensors for arsenic detection. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2019.111785

    Article  Google Scholar 

  • McKenzie RC, Arthur JR, Beckett GJ (2002) Selenium and their gelation of cell signaling, growth, and survival: molecular and mechanistic aspects. Antioxid Redox Signal 4(2):339–351

    Article  CAS  Google Scholar 

  • Meng X, Bang S, Korfiatis GP (2000) Effects of ilicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res 34(4):1255–1261. https://doi.org/10.1016/S0043-1354(99)00272-9

    Article  CAS  Google Scholar 

  • Miller WH, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Can Res 62(14):3893–3903

    CAS  Google Scholar 

  • Mizumura A, Watanabe T, Kobayashi Y, Hirano S (2010) Identification of arsenite-and arsenic diglutathione-binding proteins in human hepatocarcinoma cells. Toxicol Appl Pharmacol 242(2):119–125

    Article  CAS  Google Scholar 

  • Mohammed JN, Wan Dagang WRZ (2019) Implications for industrial application of bioflocculant demand alternatives to conventional media: waste as a substitute. Water Sci Technol 80(10):1807–1822

    Article  Google Scholar 

  • Moher D, Liberati A, Tetzlaff J, Altman DG (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8(5):336–341

    Article  Google Scholar 

  • Nidheesh P, Singh TA (2017) Arsenic removal by electrocoagulation process: recent trends and removal mechanism.". Chemosphere 181:418–432

    Article  CAS  Google Scholar 

  • Obinaju BE (2009) Mechanisms of arsenic toxicity and carcinogenesis. Afr J Biochem Res 3(5):232–237

    CAS  Google Scholar 

  • Okaiyeto K, Ekundayo TC, Okoh AI (2020) Global research trends on bioflocculant potentials in wastewater remediation from 1990 to 2019 using a bibliometric approach. Lett Appl Microbiol 71(6):567–579

    Article  CAS  Google Scholar 

  • Olisah C, Okoh OO, Okoh AI (2019) Global evolution of organochlorine pesticides research in biological and environmental matrices from 1992 to 2018: a bibliometric approach. Emerg Contaminants 5:157–167

    Article  Google Scholar 

  • Palaniappan PR, Vijayasundaram V (2009) The effect of arsenic exposure and the efficacy of DMSA on the proteins and lipids of the gill tissues of Labeo rohita. Food Chem Toxicol 47(8):1752–1759

    Article  CAS  Google Scholar 

  • Paul MK, Kumar R, Mukhopadhyay AK (2008) Dithiothreitol abrogates the effect of arsenic trioxide on normal rat liver mitochondria and human hepatocellular carcinoma cells. Toxicol Appl Pharmacol 226(2):140–152

    Article  CAS  Google Scholar 

  • Peng Y, Lin A, Wang K, Liu F, Zeng F, Yang L (2015) Global trends in DEM-related research from 1994 to 2013: A bibliometric analysis. Scientometrics. https://doi.org/10.1007/s11192-015-1666-7

    Article  Google Scholar 

  • Peraza MA, Cromey DW, Carolus B, Carter DE, Gandolfi AJ (2006) Morphological and functional alterations in human proximal tubular cell line induced by low level inorganic arsenic: evidence for targeting of mitochondria and initiated apoptosis. J Appl Toxicol 26(4):356–367

    Article  CAS  Google Scholar 

  • Pfeifer HR, Beatrizotti G, Berthoud J, Rossa MD, Girardet A, Jäggli M, Lavanchy JC, Reymond D, Righetti G, Schlegel C, Schmit V, Temgoua E (2002) Natural arsenic-contamination of surface and ground waters in Southern Switzerland (Ticino). Bulletin for Applied Geology 7:81–103

    Google Scholar 

  • Pu Y, Yang S, Huang Y, Chung C, Huang SK, Chiu AW, Yang M, Chen C, Hsueh Y (2007) Urinary arsenic profile affects the risk of urothelial carcinoma even at low arsenic exposure. Toxicol Appl Pharmacol 218:99–106. https://doi.org/10.1016/j.taap.2006.09.021

    Article  CAS  Google Scholar 

  • Rahman MM, Ng JC, Naidu R (2009) Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 31:189–200

    Article  CAS  Google Scholar 

  • Ramana CV, Boldogh I, Izumi T, Mitra S (1998) Activation of apurinic/a pyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals”. Proc Natl Acad Sci USA 95(9):5061–5066

    Article  CAS  Google Scholar 

  • Rehman MU., Khan R, Khan A, Qamar W, Arafah A, Ahmad A, Ahmad A, Akhter R, Rinklebe J, Ahmad P (2021) Fate of arsenic in living systems: implications for sustainable and safe food chains. J Hazardous Mater 126050. https://doi.org/10.1016/j.jhazmat.2021.126050

  • Rosen BR, Liu ZJ (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35:512–515

    Article  CAS  Google Scholar 

  • Roswall N, Hvidtfeldt UA, Harrington J, Levine KE, Sørensen M, Tjønneland A, Meliker JR, Raaschou-Nielsen O (2018) Predictors of urinary arsenic levels among postmenopausal Danish women. Int J Environ Res Public Health 15(7):1340

    Article  Google Scholar 

  • Selvaraj V, Tomblin J, Armistead MY, Murray E (2013) Selenium (sodium selenite) causes cytotoxicity and apoptotic mediated cell death in PLHC-1 fish cell line through DNA and mitochondrial membrane potential damage. Ecotoxicol Environ Saf 87:80–88

    Article  CAS  Google Scholar 

  • Shen Y, Shen ZX, YanH Chen J, Zeng XY, Li JM, Li XS, Wu W, Xiong SM, Zhao WL, Tang W, Wu F, Liu YF, Niu C, Wang ZY, Chen SJ, Chen Z (2001) Studies on the clinical efficacy and pharmacokinetics of low-dosearsenic trioxide in the treatment of relapsed acute promyelocytic leukemia: a comparison with conventional dosage. Leukemia 15(5):735–741. https://doi.org/10.1038/sj.leu.2402106

    Article  CAS  Google Scholar 

  • Sies H, de Groot H (1992) Role of reactive oxygen species in cell toxicity. Toxicol Lett 64–65:547–551

    Article  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Science of Total Environment 409:2430–2442

    Article  CAS  Google Scholar 

  • Steinmaus C, Bates MN, Yuan Y, Kalman D, Atallah R, Rey OA, Biggs ML, Hopenhayn C, Moore LE, Hoang BK, Smith AH (2006) Arsenic methylation and bladder cancer risk in case-control studies in Argentina and the United States. J Occupat Environ Med 48:478–488. https://doi.org/10.1097/01.jom.0000200982.28276.70

    Article  CAS  Google Scholar 

  • Sun J, Guo Y, Scarlat MM, Lv G, Yang XG, Hu YC (2018) Bibliometric study of the orthopaedic publications from China. Int Orthop 42(3):461–468

    Article  Google Scholar 

  • Suzuki J, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radical Biol Med 22(1–2):269–285

    Article  CAS  Google Scholar 

  • Sweileh WM (2017) Global research trends of World Health Organization’s top eight emerging pathogens. Global Health. https://doi.org/10.1186/s12992-017-0233-9 (PMID: 28179007)

    Article  Google Scholar 

  • Sweileh WM, Sawalha AF, Al-Jabi S, Zyoud SH (2017) Bibliometric analysis of literature on antifungal triazole resistance: 1980–2015. GERMS. https://doi.org/10.11599/germs.2017.1104

  • Tseng CH (2007) Metabolism of inorganic arsenic and non-cancerous health hazards associated with chronic exposure in humans. J Environ Biol 28:349–357

    CAS  Google Scholar 

  • Tseng C, Huang Y, Huang Y, Chung C, Yang M, Chen C, Hsueh Y (2005) Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Toxicol Appl Pharmacol 206:299–308. https://doi.org/10.1016/j.taap.2004.11.022

    Article  CAS  Google Scholar 

  • Vahter M (2002) Mechanisms of arsenic biotransformation. Toxicology 181–182:211–217

    Article  Google Scholar 

  • Vahter M (2008) Health Effects of Early Life Exposure to Arsenic – Mini Review. Basic Clin Pharmacol Toxicol 102:204–211. https://doi.org/10.1111/j.1742-7843.2007.00168.x

    Article  CAS  Google Scholar 

  • Valdiglesias V, ´ asaro E P, M´endez J, Laffon B, (2010) In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review. Arch Toxicol 84(5):337–351

    Article  CAS  Google Scholar 

  • Vanni T, Mesa-Frias M, Sanchez-Garcia R, Roesler R, Schwartsmann G, Goldani MZ, Foss AM (2014) International scientific collaboration in HIV and HPV: a network analysis. PloS one 9(3) https://doi.org/10.1371/journal.pone.0093376 PMID: 24682041

  • Ventura-Lima J, Bogo MR, Monserrat JM (2011) Arsenic toxicity in mammals and aquatic animals: a comparative biochemical approach. Ecotoxicol Environ Saf 74(3):211–218

    Article  CAS  Google Scholar 

  • Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: Sources, behavior and distribution. Sci Total Environ 366:701–721

    Article  CAS  Google Scholar 

  • World Health Organization, WHO and International Agency for Research on Cancer, IARC monographs on the evaluation of carcinogenic risks to humans. (2004) Volume 84: Some drinking water disinfectants and contaminants including arsenic. Lyon: World Health Organization, International Agency for Research on Cancer (IARC); Pp 526. http://monographs.iarc.fr/ENG/Monographs/vol84/mono84.pdf (Accessed October 19, 2021)

  • Wu M, Chiou H, Hsueh Y, Hong C, Su C, Chang S, Huang W, Wang H, Wang Y, Hsieh Y, Chen C (2006) Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis. Toxicol Appl Pharmacol 216:168–175. https://doi.org/10.1016/j.taap.2006.05.005

    Article  CAS  Google Scholar 

  • Wu M, Jiang Y, Kwong RW, Brar SK, Zhong H, Ji R (2021) How do humans recognize and face challenges of microplastic pollution in marine environments? A Bibliomet Analy Environ Pollut. https://doi.org/10.1016/j.envpol.2021.116959

    Article  Google Scholar 

  • Zakhar R, Derco J, Čacho F (2018) An overview of main arsenic removal technologies. Acta Chimica Slovaca 11(2):107–113

    Article  CAS  Google Scholar 

  • Zhang L, Wang MH, Hu J, Ho YS (2010) A review of published wetland research, 1991–2008: ecological engineering and ecosystem restoration. Ecol Eng 36(8):973–980. https://doi.org/10.1016/j.ecoleng.2010.04.029

    Article  Google Scholar 

  • Zhang Y, Xu B, Guo Z, Han J, Li H, Jin L, Chen F, Xiong Y (2019) Human health risk assessment of groundwater arsenic contamination in Jinghui irrigation district, China. J Environ Manage 237:163–169

    Article  CAS  Google Scholar 

  • Zyoud SH (2017) Global toxocariasis research trends from 1932 to 2015: A bibliometric analysis. Health Research Policy and Systems. https://doi.org/10.1186/s12961-017-0178-8 (PMID: 28231792)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Cape Peninsula University of Technology grant (CPUT-RJ23) for their support to this study. We are also grateful to Ibrahim Badamasi Babangida University, Lapai and University of Medical Sciences, Ondo City for allowing us to use their facilities for this research

Author information

Authors and Affiliations

Authors

Contributions

Kunle Okaiyeto and Mohammed Jibrin Ndejiko and Abiodun Olagoke Adeniji conceptualized the idea of this research. Temitope Cyrus Ekundayo and Oluwafemi Oguntibeju Omoniyi conducted the analysis and wrote the methodology. Wan Rosmiza Zana Wan Dagang wrote the introduction and the conclusion. Results and discussion sections were written by Mohammed Jibrin Ndejiko and Kunle Okaiyeto. All authors participated in proofreading and organization of the manuscript.

Corresponding author

Correspondence to J. N. Mohammed.

Ethics declarations

Conflict of Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Editorial responsibility: Maryam Shabani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, J.N., Okaiyeto, K., Ekundayo, T.C. et al. Evaluation of global Arsenic remediation research: adverse effects on human health. Int. J. Environ. Sci. Technol. 20, 3987–4002 (2023). https://doi.org/10.1007/s13762-022-04273-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04273-x

Keywords

Navigation