Skip to main content

Advertisement

Log in

Groundwater vulnerability assessment in a karst aquifer: a case study of western Iran

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Conservation of the karst water resources is important in their management owing to the high vulnerability and responsiveness they show to contamination. Hence, vulnerability assessment for the groundwater resources can be a rather favorable and cost-effective way to identify the regions that are susceptible to contamination. This study aims to estimate the vulnerability of the Khoryn karst aquifer, Iran, to the propagation of contamination using the COP and EPIK models. Employing the COP model, 37.89%, 26.84%, 13.95%, and 21.32% of the study region were labeled as very low, low, moderately, and highly vulnerable, respectively. On the other hand, 23.38%, 14.56%, 35.31%, and 26.75% of the study area were similarly tagged under the same metric according to the results of the EPIK model. The areas labeled as low vulnerable corresponded to the regions without karst as well as the plains located within the outer parts of the mountains. The areas with the highest vulnerability coincided in both model maps. These highly vulnerable regions are thick-bedded Bisetun lime inscriptions with a low-density vegetation cover and the highest amount of precipitation. These regions normally lack soil and mainly include carbonate outcrops. According to the results, the feeding basins of Marab, Mir ahmad and Bi abr springs are expected to be more vulnerable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdullah T, Ali S, Al-Ansari N, Knutsson S (2018) Assessment of Groundwater Vulnerability to Pollution Using VLDA and COP Models in Halabja Said sadiq. Iraq Civil Eng Architect 12(12):798–809

    Google Scholar 

  • Afrasiabian A (2007) The importance of protection and management of Karst water as drinking water resources in Iran. Environ Geol 52(4):673–677

    Article  Google Scholar 

  • Aller L, Bennett T, Lehr J, Petty R, and Hackett G (1987) DRASTIC: A standardized system for evaluation ground water pollution potential using hydrogeological settings. National Water Well Association, Dublin, Ohio and Environmental Protection Agency, Ada, Ok. EPA-600/2-87-035

  • Andreo B, Goldscheider N, Vadillo I, Vías JM, Neukum C, Sinreich M, Jiménez P, Brechenmacher J, Carrasco F, Hötzl H, Perles MJ (2006) Karst groundwater protection: first application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Lı´bar (Southern Spain). Sci Total Environ 357:54–73

    Article  CAS  Google Scholar 

  • Andreo B, Vias J, Durán J, Jiménez P, LopezGeta J, Carrasco F (2008) Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in southern Spain. Hydrogeol J 16(5):911–925

    Article  CAS  Google Scholar 

  • Andreo B, Ravbar N, Vías JM (2009) Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeology 17:749–758. https://doi.org/10.1007/s10040-008-0391-1

    Article  CAS  Google Scholar 

  • Ayşenur A, Pınar A, Ahmet Ç, Ayşe M, Naciye NÖ (2020) Significance of validation for karst aquifers’ vulnerability assessments: antalya Travertine Plateau (Turkey) application. J Contamin Hydrol. https://doi.org/10.1016/j.jconhyd.2019.103557

    Article  Google Scholar 

  • Braud J. (1989). LA suture du Zagros au niveau de Kermanshah (Kurdistan Iranian): Mem Geodiffusion, 5, 489P., 125 Fig, 1, Carte H, T., Paris.

  • Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Popescu C, Zwhalen F (2002) Main concepts of the “European Approach” for (karst) groundwater vulnerability assessment and mapping. Hydrogeology J 10(2):340–345

    Article  Google Scholar 

  • De Jong C, Cappy S, Finckh M, Funk D (2008) A transdisciplinary analysis of water problems in the mountainous karst areas of Morocco. Eng Geol 99(3):228–238

    Article  Google Scholar 

  • De Souza RT, Heredia OS, Travassos LEP, Velásquez LNM, Sampaio JLD (2020) Influência da Espessura da Camada de solo na Proteção dos aquíferos Cársticos sob os Climas Tropical Úmido e Europeu Mediterrâneo, pelo Método de Vulnerabilidade COP. Águas Subterrâneas 34(1):50–65

    Article  Google Scholar 

  • Doerfliger N, Jeannin P-Y, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol J 39(2):165–176

    Article  CAS  Google Scholar 

  • Doerfliger N, Zwahlen F (1998) Practical guide-groundwater vulnerability mapping in karstic region (EPIK)-application to groundwater protection zone. Swiss Agency for the Environment, Forests and landscape (SAEFL), Bern

  • Entezari M, Yamani M, Aghdam MJ (2016) Evaluation of intrinsic vulnerability, hazard and risk mapping for karst aquifers, Khorein aquifer, Kermanshah province: a case study. Environ Earth Sci 75(5):435. https://doi.org/10.1007/s12665-016-5258-5

    Article  CAS  Google Scholar 

  • Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, United Kingdom

    Book  Google Scholar 

  • Ford D, Williams PD (2013) Karst hydrogeology and geomorphology. Wiley, New Jersey

    Google Scholar 

  • Foster SSD (1987) In Vulnerability of soil and groundwater to pollutions: proceedings and information. In: Van Duijvedbooden W, van Waegeningh HG (eds) Fundamental concepts in aquifer vulnerability pollution risk and protection strategy. TNO Committee on Hydrological Research, The Hague, pp 69–86

    Google Scholar 

  • Hadzic E, Lazovic N, Mulaomerovic-Seta A (2015) The importance of groundwater vulnerability maps in the protection of groundwater sources. Key study. Sarajevsko Polje Procedia Environ Sci 25:104–111

    Article  Google Scholar 

  • Jakada H, Chen Z, Luo Z, Zhou H, Luo M, Ibrahim A, Tanko N (2018) Coupling intrinsic vulnerability mapping and tracer test for source vulnerability and risk assessment in a karst catchment based on epik method: a case study for the Xingshan County Southern China. Arab J Sci Eng 8(1):1–13

    Google Scholar 

  • Jones NA, Hansen J, Springer AE, Valle C, Tobin BW (2019) Modeling intrinsic vulnerability of complex karst aquifers: modifying the COP method to account for sinkhole density and fault location. Hydrogeol J 27(8):2857–2868

    Article  Google Scholar 

  • Kakavas MP, Zagana NKG (2015) E. Karst features detection and mapping using airphotos. Dsms and GIS Techniques Proc SPIE 9644:1–10. https://doi.org/10.1117/12.2194529

    Article  Google Scholar 

  • Katsanou K, Lambrakis N (2017) First outcomes of the COP method application for the assessment of intrinsic vulnerability in the karst system of vouraikos catchment Greece. J Earth Sci Environ Stud 3(1):324–331

    Google Scholar 

  • Kazakis N, Oikonomidis D, Voudouris KS (2015) Groundwater vulnerability and pollution risk assessment with disparate models in karstic, porous, and fissured rock aquifers using remote sensing techniques and GIS in Anthemountas basin. Greece Environ Earth Sci 74:6199–6209. https://doi.org/10.1007/s12665-015-4641-y

    Article  Google Scholar 

  • Kazakis N, Ollivier C, Chalikakis K, Mazzilli N, Manakos A, Voudouris K (2018) Groundwater vulnerability assessment in the Strategic Greek Karst Aquifer of Damasi Titanos using QGIS PaPRIKa plugin. SPONSORS & PaRTNERS, 103

  • Khoshakhlagh F, Bagheri S and Safarrad T. (2015). The analysis of severe droughts influences on karst springs discharge in Kermanshah Province (case study: severe drought of year 2007–2008), Geographical space, 2015,14(48): 1–19. In Persian

  • Klimchouk A (1997) The natural and principal characteristics of epikarst. In: Proceedings of the 12th international Congress of Speleology La Chaux-de-Fonds, Switzerlands, 10–17.8.1997, Vol. 1

  • Kovarik JL, Van Beynen PE (2015) Application of the karst disturbance index as a raster-based model in a developing country. Appl Geogr 63:396–407

    Article  Google Scholar 

  • Lenhare BD, Sallun FW (2019) Application of EPIK and KDI methods for identification and evaluation of karst vulnerability at Intervales State Park and surrounding region (Southeastern Brazil). Carbonates Evaporites 34(1):175–187

    Article  CAS  Google Scholar 

  • Maleki A, Bageri S, Mataee S (2019) Assessing vulenerability of Karstic aquifers in Kermanshah Plain and Bistoon-Parao mass using COP Model. Res Geogr Sci 19(52):129–145 (In Persian). http://jgs.khu.ac.ir/article-1-2880-fa.html

    Google Scholar 

  • Mudarra M, Andreo B (2011) Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers: the case of Alta Cadena (Southern Spain). J Hydrol 397(3):263–280

    Article  CAS  Google Scholar 

  • Nanou E, Zagana E (2018) Groundwater vulnerability to pollution map for karst aquifer protection (Ziria Karst System, Southern Greece). Geosciences 8(4):125. https://doi.org/10.3390/geosciences8040125

    Article  Google Scholar 

  • Ollivier C, Chalikakis K, Mazzilli N, Kazakis N, Lecomte Y, Danquigny C, Emblanch C (2019) Challenges and limitations of karst aquifer vulnerability mapping based on the PaPRIKa method—Application to a large European karst aquifer (Fontaine de Vaucluse, France). Environments 6(3):39

    Article  Google Scholar 

  • Osati Kh, Koeniger P, Salajegheh A, Mahdavi M, Chapi K, Malekian A (2014) Spatiotemporal patterns of stable isotopes and hydrochemistry in springs and river flow of the upper Karkheh River Basin, Iran. Isotopes Environ Health Stud 50(2):169–183. https://doi.org/10.1080/10256016.2014.857317

    Article  CAS  Google Scholar 

  • Pereira DL, Galvão P, Lucon T, Fujaco MA (2019) Adapting the EPIK method to Brazilian Hydro (geo) logical context of the São Miguel watershed to assess karstic aquifer vulnerability to contamination. J S Am Earth Sci 90:191–203

    Article  Google Scholar 

  • Radutu A, Gaitanaru D, Vlaicu M, Iliescu C, Gogu C (2018) Vulnerability assessment of the zaton-bulba karst aquifer, a basis to define its protection areas. Agro Life Scient J 7(1):105–114

    Google Scholar 

  • Rangzan K, MehrabiNejad A, Alijani F, Ostadhashemi Z (2017) Vulnerability and contamination of Horseshoe karstic aquifer, south east of Izeh, using COP method. Adv Appl Geol 7(23):20–28. https://doi.org/10.22055/aag.13067

    Article  Google Scholar 

  • Ruifang Y, Hua J, Xiaoyan H, Hu L, Xuzhao W, Yongbo Z (2016) Assessment of karst groundwater vulnerability in xin'an spring area based on modified RISKE model, Environ Sci Tech, 10(1):

  • Sajedi-Hosseini F, Malekian A, Choubin B, Rahmati O, Cipullo S, Coulon F, Pradhan B (2018) A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci Total Environ 644:954–962. https://doi.org/10.1016/j.scitotenv.2018.07.054

    Article  CAS  Google Scholar 

  • Sappa G, Ferranti F, De Filippi FM (2017) Vulnerability assessment of the karst aquifer feeding the pertuso spring (central Italy): comparison between different applications of COP method. Int J Eng Sci Res Tech 6(6):483–492

    Google Scholar 

  • Van Stempvoort D, Ewert D, Wassenaar L (1993) Aquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mapping. Can Water Resour J 18(1):25–37

    Article  Google Scholar 

  • Vias JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeology J 14(6):912–925. https://doi.org/10.1007/s10040-006-0023-6

    Article  CAS  Google Scholar 

  • Vogelbacher A, Kazakis N, Voudouris K, Bold S (2019) Groundwater vulnerability and risk assessment in a karst aquifer of Greece Using EPIK Method. Environments 6(11):116

    Article  Google Scholar 

  • Yang YS, Wang L (2010) Catchment-scale vulnerability assessment of groundwater pollution from diffuse sources using the DRASTIC method: a case study". Hydrol Sci J 55(5):1–12

    Google Scholar 

  • Yang J et al (2016) The burden of stroke mortality attributable to cold and hot ambient temperatures: epidemiological evidence from China. Environ Int 92:232–238

    Article  Google Scholar 

  • Zwahlen F (2003) COST action 620 vulnerability and risk mapping for the protection of carbonate (Karst) aquifers final report; European commission, Directorate-general XII science, Research and Development: Brüssel, Luxemburg

Download references

Acknowledgment

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghadimi.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadimi, M., Zangenehtabar, S., Malekian, A. et al. Groundwater vulnerability assessment in a karst aquifer: a case study of western Iran. Int. J. Environ. Sci. Technol. 19, 7503–7516 (2022). https://doi.org/10.1007/s13762-022-03956-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-03956-9

Keywords

Navigation