Skip to main content

Advertisement

Log in

Microbial anaerobic digestion: process dynamics and implications from the renewable energy, environmental and agronomy perspectives

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Microorganisms have been allied with serious deleterious environmental, human and public health hazards. Microbial interactions are vital in the biotransformation of wastes to valuable end products via the waste-to-energy technology. Microbial anaerobic degradation has been considered as a powerful tool to address the shortcomings faced by conventional energy sources (e.g. the conventional energy sources are non-renewable, can deplete over time and are very costly). It is the anaerobic breakdown of organic wastes within the precincts of an airtight biodigester, by the concerted activities of four metabolically linked microorganisms participating at specific phases of the process to ultimately yield methane and carbon dioxide. Microorganisms are present in these wastes from animal origin, feeds or during collection of the wastes for disposal. The threefold benefit of the process includes: firstly, sanitization of the organic wastes whereby the pathogens of environmental and public health significance can be reduced to threshold levels recommended for safe handling by humans. Also, it addresses the pollution problem caused by greenhouse gas emission. Secondly, the recovered digestate contains macro- and micronutrients that are valuable for plant growth. Soil amendment with digestate influences the microbial activity, the microbial biomass structure and the size which in turn improve on soil fertility and quality thus, improve on food security. Clearly, this minimizes the use of synthetic chemical fertilizers with adverse effects. Thirdly, anaerobic digestion of biomass generates biogas, a renewable energy from waste degradation which can be used for cooking, heating and or harnessed to produce electricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd EL-Salam MM, Abu-Zuid GI (2015) Impact of landfill leachate on the groundwater quality: a case study in Egypt. J Adv Res 6:579–586

    Article  CAS  Google Scholar 

  • Abomohra AEF, Jin W, Tu R, Han S-F, Eid M, Eladel H (2016) Microalgal biomass production as a suitable feedstock for biodiesel: current status and perspectives. Renew Sustain Energy Rev 64:596–606

    Article  CAS  Google Scholar 

  • Abubaker J, Cederlund H, Arthurson V, Pell M (2013) Bacterial community structure and microbial activity in different soils amended with biogas residues and cattle slurry. Appl Soil Ecol 72:171–180

    Article  Google Scholar 

  • Abubaker J, Risberg K, Jönsson E, Dahlin AS, Cederlund H, Pell M (2015) Short-term effects of biogas digestates and pig slurry application on soil microbial activity. Appl Environ Soil Sci 2015:1–15. https://doi.org/10.1155/2015/658542

    Article  Google Scholar 

  • Adekunle KF, Okolie JA (2015) A review of biochemical process of anaerobic digestion. Adv Biosci Biotechnol 6:205–2012

    Article  CAS  Google Scholar 

  • Agrahari RP, Tiwari GN (2013) The production of biogas using kitchen waste. Int J Energy Sci 3:408–413

    Article  Google Scholar 

  • Ahlberg-Eliasson K, Nadeau E, Levén L, Schnürer A (2017) Production efficiency of Swedish farm-scale biogas plants. Biomass Bioenerg 97:27–37

    Article  CAS  Google Scholar 

  • Ahn HK, Smith MC, Kondrad SL, White JW (2010) Evaluation of biogas production potential by dry anaerobic digestion of switchgrass-animal manure mixtures. Appl Biochem Biotechnol 160(4):965–975

    Article  CAS  Google Scholar 

  • Akwaka JC, Kukwa DT, Mwekaven SS (2014) Preliminary study on co-digestion of cow manure with pretreated sawdust for production of biogas and bio fertilizer. Int J Sci Technol 3:222–228

    Google Scholar 

  • Al-Seadi T, Lukehurst CT (2012) Quality management of digestate from biogas plant used as fertilizer. In: Baxter D, Frost P (eds) Task 37, IEA bioenergy. www.iea-biogas.net. Accessed 18 Aug 2016

  • Alvarado A, Montañez-Hernández LE, Palacio-Molina SL, Oropeza-Navarro R, Luévanos-Escareño MP, Balagurusamy N (2014) Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters. Front Microbiol 5:597

    Article  Google Scholar 

  • Amani T, Nosrati M, Sreekrishnan TR (2010) Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects—a review. Environ Rev 18:255–278. https://doi.org/10.1139/A10-011

    Article  CAS  Google Scholar 

  • Amin FR, Khalid H, Zhang H, u Rahman S, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7:72

    Article  CAS  Google Scholar 

  • Amritha PK, Anilkumar PP (2016) Developemnt of landscaped landfills using organic waste for sustainable urban waste management. Proc Environ Sci 35:368–376

    Article  CAS  Google Scholar 

  • Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Methods in methane metabolism. Part A: methanogenesis. In: Rosenzweig AC, Ragsdale SW (eds) Methods in enzymology, vol 494. Academic Press, London

    Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH, Wreen BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemical from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485

    Article  CAS  Google Scholar 

  • Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781

    Article  CAS  Google Scholar 

  • Aprilia A, Tezuka T, Spaargaren G (2013) Inorganic and hazardous solid waste management: current status and challenges for Indonesia. Procedia Environ Sci 17:640–647

    Article  Google Scholar 

  • Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNI (2014) Pre-treatment methods to enhance anaerobic digestion of organic solid. Appl Energy 123:143–156

    Article  CAS  Google Scholar 

  • Asam ZUZ, Poulsen TG, Nizami AS, Rafique R, Kiely G, Murphy JD (2011) How can we improve biomethane production per unit of feedstock in biogas plants? Appl Energy 88:2013–2018

    Article  CAS  Google Scholar 

  • Astill GM, Shumway CR (2016) Profits from pollutants: economic feasibility of integrated anaerobic digester systems. Working paper series, WP 2016-5, School of Economic Sciences, Washington State University, pp 1–43

  • Atandi E, Rahman S (2012) Prospect of anaerobic co-digestion of dairy manure: review. Environ Technol Rev 1(1):125–127

    Article  CAS  Google Scholar 

  • Babaee A, Shayegan J (2011) Effects of organic loading rates (OLR) on production of methane from anaerobic digestion of vegetable wastes. In: Proceedings of the world renewable energy congress, Linköping, Sweden, 8–13 May 2011, pp 411–417

  • Babaee A, Shayegan J, Roshani A (2013) Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading rate and temperature. J Environ Health Sci Eng 11:15

    Article  CAS  Google Scholar 

  • Bagge E, Sahlström L, Albin A (2005) The effect of hygienic treatment on the microbial flora of biowaste at biogas plants. Water Res 39:4879–4886

    Article  CAS  Google Scholar 

  • Bai R, Sutanto M (2002) The practice and challenges of solid waste management in Singapore. Waste Manag 22(5):557–567

    Article  Google Scholar 

  • Bainbridge D, Haggard K (2011) IEA bioenergy task 37. 100% biogas for urban transport in Linköping, Sweded. Biogas in the society. www.iea-biogas.net.Inform. Accessed 11 Aug 2017

  • Bajgiran AR (2013) Influence of soil amendments and soil properties on macro- and micronutrient availability to microorganisms and plants. Dissertation, Swedish University of Agricultural Sciences

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) The IWA anaerobic digestion model no. 1 (ADM1). Water Sci Technol 45(10):65–73

    Article  CAS  Google Scholar 

  • Berndes G, Hoogwijk M, Van den Broek R (2003) The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenerg 25:1–28

    Article  Google Scholar 

  • Bolzonella D, Pavan P, Mace S, Cecchi F (2006) Dry anaerobic digestion of differently sorted organic municipal solid wastes: a full-scale experience. Water SciTechnol 53(8):23–32

    CAS  Google Scholar 

  • Brummeler ET (2000) Full scale experience with the BIOCEL process. Water Sci Technol 41:299–304

    Article  Google Scholar 

  • Burkholder J, Libra B, Weyer P, Heathcote S, Kolpin D, Thorne PS, Wichman M (2007) Impacts of waste from concentrated animal feeding operations on water quality. Environ Health Perspect 115:308–312

    Article  CAS  Google Scholar 

  • Buss W, Mašet O (2014) Mobile organic compounds in biochar—a potential source of contamination—phytotoxic effects on iress seed (Lepidium sativam) germination. J Environ Manag 137:111–119

    Article  CAS  Google Scholar 

  • Buss W, Mašek O, Graham M, Wüst D (2015) Inherent organic compounds in biochar-their content, composition and potential toxic effects. J Environ Manag 156:150–157

    Article  CAS  Google Scholar 

  • Carlsson M, Naroznova I, Møller J, Scheutz C, Lagerkvist A (2015) Importance of food waste pre-treatment efficiency for global warming potential in life cycle assessment of anaerobic digestion systems. Resour Conserv Recycl 102:58–66

    Article  Google Scholar 

  • Castano JM, Martin JF, Ciotola R (2014) Performance of a small scale, varaibale temperature fixed dome digester in a temperature climate. Energies 7:5701–5716. https://doi.org/10.3390/en7095701

    Article  CAS  Google Scholar 

  • Cesaro A, Belgiorno V (2015) Combined biogas and bioethanol production: opportunities and challenges for industrial application. Energies 8:8121–8144

    Article  CAS  Google Scholar 

  • Chachkhiani M, Dabert P, Abzianidze T, Partskhaladze G, Tsiklauri L, Dudauri T, Godon JJ (2004) 16S rDNA characterisation of bacterial and archaeal communities during start-up of anaerobic thermophilic digestion of cattle manure. Bioresour Technol 73:227–232

    Article  CAS  Google Scholar 

  • Chakraborty D, Mondal NK, Datta JK (2014) Indoor pollution from solid biomass fuel and rural health damage: a micro-environmental study in a rural area of Burdwan, West Bengal. Int J Sustain Built Environ 3:262–271

    Article  CAS  Google Scholar 

  • Charles W, Walker L, Cord-Ruwisch R (2009) Effect of pre-aeration and inoculum on the start-up of batch thermophilic anaerobic digestion of municipal solid waste. Bioresour Technol 100:2329–2335

    Article  CAS  Google Scholar 

  • Chavez-Vazquez M, Bagley DM (2002) Evaluation of the different anaerobic digestion technologies for solid waste treatment. In: CSCE/EWRI of ASCE environmental engineering conference, Niagara

  • Chen H (2014) Chemical composition and structure of natural lignocellulose. Biotechnology of lignocellulose: theory and practice. Chemical Industry Press, Beijing, pp 25–71

    Chapter  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008a) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  • Chen Y, RöBler B, Zielonka S, Wonneberger AM, Lemmer A (2008b) Effects of organic loading rate on the performance of a pressurized anaerobic filter in two-phase anaerobic digestion. Energies 7:736–750

    Article  CAS  Google Scholar 

  • Christy PM, Gopinath LR, Divya D (2014) Microbial dynamics during anaerobic digestion of cow dung. Int J Plant Anim Environ Sci 4(4):86–94

    CAS  Google Scholar 

  • Chudoba P, Sardret C, Palko G, Guibelin E (2011) Main factors influencing anaerobic digestion of sludge nd energy efficiency at several large WWTP in Central Europe. J Res Sci Technol 8(2):89–96

    CAS  Google Scholar 

  • Cioabla AE, Lonel L, Dumitrel GA, Popescu F (2012) Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol Biofuels 5:39

    Article  Google Scholar 

  • Climate Change and Emissions Management Corporation (2013) Lethbridge biogas LP, 2.85 MW Lethbridge biogas/cogeneration facility, Project ID no. G101234. http://www.planet-biogas.ca. Accessed 6 Aug 2017

  • Colantoni A, Evic N, Lord R, Retschitzegger S, Proto AR, Gallucci F, Monarca D (2016) Characterization of biochar produced from pyrolysis of pelletized agricultural residues. Renew Sustain Energy Rev 64:187–194

    Article  CAS  Google Scholar 

  • Cornejo C, Wilkie AC (2010) Greenhouse gas emissions and biogas potential from livestock in Ecuador. Energy Sustain Dev 14:256–266

    Article  CAS  Google Scholar 

  • Côté C, Massé DI, Quessy S (2006) Reduction of indicator and pathogenic microorganisms by psychrophilic anaerobic digestion in swine slurries. Bioresour Technol 97:686–691

    Article  CAS  Google Scholar 

  • Cubillos G, Arrue R, Jeison D, Chamy R, Tapia E, Rodríguez J, Ruiz-Filippi G (2010) Simultaneous effects of pH and substrate concentration on hydrogen production by acidogenic fermentation. Electron J Biotechnol 13(1):1–7

    Google Scholar 

  • Cury Marinho Mathias JP (2014) Manure as a resource: livestockwaste management from anaerobic digestion, opportunities and challenges for Brazil. Int Food Agrib Man Rev 17(4):87–110

    Google Scholar 

  • Da Silva OB, Carvalho LS, de Almeida GC, de Oliveira JD, Carmo TS, Parachin NS (2017) Biogas-turning waste into clean energy. In: Jozala A (ed) Fermentation processes. INTECH, pp 161–180. http://dx.doi.org/10.5772/64262

  • Daniel-Gromke J, Liebetrau J, Denysenko V, Krebs C (2015) Digestion of bio-waste-GHG emissions and mitigation potential. Energy Sustain Soc 5:3

    Article  Google Scholar 

  • De Vrieze J, Hennebel T, Boon Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9

    Article  CAS  Google Scholar 

  • Dinamarca S, Aroca G, Chamy R, Guerrero L (2003) The influence of pH in the hydrolytic stage of anaerobic digestion of organic fraction of urban solid waste. Water Sci Technol 48(6):249–254

    Article  CAS  Google Scholar 

  • Dobre P, Nicolae F, Matei F (2014) Main factors affecting biogas production—an overview. Rom Biotechnol Lett 19(3):9283–9296

    CAS  Google Scholar 

  • Drake HL, Küsel K, Matthies C (2013) Acetogenic prokaryotes. In: Rosenberg EF, DeLong S, Lory E, Stackebrandt F, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 3–60

    Chapter  Google Scholar 

  • Drosg B, Fuchs W, Al Seadi T, Madsen M, Linke B (2015) Nutrient recovery by biogas digestate processing. IEA bioenergy. http://www.iea-biogas.net. Accessed 13 Aug 2017

  • Dubey V, Patel AK, Shukla A, Shukla S, Singh S (2012) Impact of continuous use of fertilizers on soil fertility and productivity for the main crop of Sidhi district of eastern MP. Environ Sci Indian J 7(1):24–28

    Google Scholar 

  • El Monayeri DS, Atta NN, El Mokadem SN, Aboulfotoh AM (2013) Improvement of anaerobic digestion using pre-selected microorganisms. Water Technol J 3(1):45–59

    Google Scholar 

  • Esfandiari S, Khosrokhavar R, Sekhavat M (2011) Greenhouse gas emissions reduction through a biogas plan: a case study of waste management system of FEKA dairy farm. In: Proceedings of 2nd international conference on environmental science and technology. LACSIT Press, Singapore, vol 6, pp V1-445–V1-448

  • Franke-Whittle IH, Confalonieri A, Insam H, Schlegelmilch M, Körner I (2014) Changes in the microbial communities during co-composting of digestates. Waste Manag 34(3):632–641

    Article  CAS  Google Scholar 

  • Fuchs JG, Bernder A, Mayer J, Schleiss K, Kupper T (2008) Effects of compost and digestate on environment and plant production—results of two research projects. In: ORBIT 2008, 13–14 Oct, Wageningen, The Netherlands

  • Fuess LT, Garcia LM (2014) Implication of stillage land disposal: a critical review on the impacts of fertigation. J Environ Manag 145:210–229

    Article  CAS  Google Scholar 

  • Fullerton DG, Bruce N, Gordon SB (2008) Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Trans R Soc Trop Med Hyg 102(9):843–851

    Article  Google Scholar 

  • Garcia ML, Angenent LT (2009) Interactions between temperature and ammonia in mesophilic digesters for animal waste treatment. Water Res 43:2373–2382

    Article  CAS  Google Scholar 

  • García-González M, Riaño B, Teresa M, Herrero E, Ward AJ, Provolo G, Moscatelli G, Piccinini S, Bonmatí A, Bernal MP, Wiśniewska H, Proniewicz M (2016) Treatment of swine manure: case studies in European’s N-surplus areas. Sci Agric 73(5):444–454

    Article  Google Scholar 

  • García-Sánchez M, Siles JA, Cajthaml T, García-Romera I, Tlustoš P, Száková J (2012) Effect of digestate and fly ash applications on soil functional properties and microbial communities. Eur J Soil Biol 71:1–12

    Article  CAS  Google Scholar 

  • Gardoni D, Guarino M (2016) Drying and combustion of an anaerobic digestate: results and economical evaluation of a demonstrative-scale plant. Int J Eng Res Sci 2(8):148–155

    Google Scholar 

  • Geisseler D, Scow KM (2014) Long-term effects of mineral fertilizers on soil microorganisms—a review. Soil Biol Biochem 75:54–63

    Article  CAS  Google Scholar 

  • Gerardi MH (2003) Bacteria and methane forming bacteria. In: Gerardi MH (ed) The microbiology of anaerobic digesters. Wiley, Hoboken, pp 15–25

    Chapter  Google Scholar 

  • Gerba CP, Smith JE Jr (2005) Sources of pathogenic microorganisms and their fate during land application of wastes. J Environ Qual 34:42–48

    CAS  Google Scholar 

  • Ghaly AE, Ramakrishnan W (2015) Nitorgen sources and cycling in the cosystem and its role in air, water and soil pollution: a critical review. J Pollut Effects Control 3:136

    Google Scholar 

  • Giuntoli J, Agostini A, Caserini S, Lugato E, Baxter D, Marelli L (2016) Climate change impacts of power generation from residual biomass. Biomass Energ 84:146–158

    Article  CAS  Google Scholar 

  • Goberna M, Gadermaier M, García C, Wett B, Insam H (2010) Adaptation of methanogenic communities to the fermentation of cattle excreta and olive mill wastes at 37 °C and 55 °C. Appl Envion Microbiol 76:6564–6571

    Article  CAS  Google Scholar 

  • Gooding CH, Meeker DL (2016) Review: comparison of 3 alternatives for large-scale processing of animal carcasses and meat by-products. Prof Anim Sci 32:259–270

    Article  Google Scholar 

  • Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg 12(1/2):83–114

    Article  Google Scholar 

  • Hahn H, Rutz D, Ferber E, Kirchmayer F (2010) Examples for financing of biogas projects in Germany, Austria, The Netherlands, Denmark and Italy, D.3.2., WP3. In: IEE project biogas IN

  • Haraldsen TK, Andersen U, Krogstad T, Sørheim R (2010) Liquid digestate from anaerobic treatment of source separated household wastes as fertilizer for barley. In: Proceedings of the 7th international ORBIT 2010 conference, June 29–3 July, Heraklion, Crete, pp 564–569

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hattori T, Morita S (2010) Energy crops for sustainable bioethanol production; which, where and how? Plant Prod Sci 13:221–234

    Article  Google Scholar 

  • Heviánková S, Kync M, Kodymová J (2014) Study and research on cleaning procedures of anaerobic digestion products. GeoSci Eng LX 2104(4):39–50

    Article  Google Scholar 

  • Hjorth M, Nielsen AM, Nyord T, Hansen MN, Nissen P, Sommer SG (2009) Nutrient value, odour emission and energy production of manure as influenced by anaerobic digestion and separation. Agron Sustain Dev 29:329–338

    Article  Google Scholar 

  • Ho D, Jensen P, Batstone D (2014) Effects of temperature and hydraulic retention time on acetotrophic pathways and performance in high rate sludge digestion. Environ Sci Technol 48(11):6468–6478

    Article  CAS  Google Scholar 

  • Hochman G, Wang S, Li Q, Gottlieb PD, Xu F, Li Y (2015) Cost of organic waste technologies: a case study for New Jersey. AIMS Energy 3(3):450–462

    Article  Google Scholar 

  • Holm-Nielsen JB, Al Seadi T, Pleskowicz-Popiel P (2009) The future of ananerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484

    Article  CAS  Google Scholar 

  • Horan NJ, Fletcher L, Betmal SM, Wilks SA, Keevil CW (2004) Die-off of enteric bacterial pathogens during mesophilic anaerobic digestion. Water Res 38:1113–1120

    Article  CAS  Google Scholar 

  • Hutchison ML, Walters LD, Avery SM, Munro F, Moore A (2005) Analyses of livestock production, waste storage and pathogen levels and prevalences in farm manures. Appl Environ Microbiol 71:1231–1236

    Article  CAS  Google Scholar 

  • Hutton B, Horan Ed, Mark Norrish M (2009) Waste management options to control greenhouse gas emissions—Landfill, compost or incineration? In: Proceedings of the ISWA conference, Portugal

  • Insam H, Franke-Whittle I, Goberna M (2010) Microbes in aerobic and anaerobic waste treatment. In: Insam H, Franke-Whittle I, Goberna M (eds) Microbes at work. Springer, Berlin, pp 1–34

    Chapter  Google Scholar 

  • Intergovernmental Panel on Climate Change (2006) IPCC guidelines for national greenhouse gas inventories. In: Eggleston HS, Buendia I, Miwa K, Ngara T, Tanabe K (eds) Prepared by the National Greenhouse Gas Inventories Program of the intergovernmental panel on climate change, Hayama, Japan: Institute of Global Environmental Strategies (IGES) 2006. http://www.ipcc-nggip-iges.or.jp/public/2006. Accessed 6 Aug 2017

  • International Renewable Energy Agency (2012) Biomass for power generation. In: Renewable energy technologies: cost analysis series, vol 1(issue 1/5). IRENA 2012

  • Ituen EE, John NM, Bassey BE (2009) Biogas production from organic waste in Akwa Ibom state of Nigeria. In: Yanful EK (ed) Appropriate technologies for environmental protection in the developing world, part II. Springer, Amsterdam, pp 93–99

    Chapter  Google Scholar 

  • Jain S, Jain S, Wolf IT, Lee J, Tong YW (2015) A comprehensive review on operating parameters and different pre-treatment methodologies for anaerobic digestion of municipal solid waste. Renew Sustain Energy Rev 52:142–154

    Article  Google Scholar 

  • Jaiyeola AT, Bwapa JK (2016) Treatment technology for brewery wastewater in a water scarce country: a review. S Afr J Sci 112(3–4):1–8. https://doi.org/10.17159/sajs.2016/20150069

    Article  CAS  Google Scholar 

  • Jha AK, Li J, Nies L, Liguo-Zhang L (2011) Research advances in dry anaerobic digestion process of solid organic wastes. Afr J Biotechnol 10:14242–14253

    Article  CAS  Google Scholar 

  • Johansen A, Nielsen HB, Hansen CM, Andreasen C, Carlsgart J, Hauggard-Nielsen H, Roepstorff A (2013) Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions. Waste Manag 33:807–812

    Article  Google Scholar 

  • Kadam MS, Sawarade SS (2016) Study and analysis of solid waste management challenges and options for treatment (Indian villages). In: IOSR Journal of Mechanical and Civil Engineering, 5th national conference RDME 2016, 10–11 March 2016. M.E.S College of Engineering, Pune, 411001, pp 15–22

  • Katuwal H, Bohara AK (2009) Biogas: a promising renewable technology and its impact on rural households in Nepal. Renew Sustain Energ Rev 13:2668–2674

    Article  Google Scholar 

  • Kearney TE, Larkin MJ, Frost JP, Levett PN (1993) Survival of pathogenic bacteria during mesophilic anaerobic digestion of animal waste. J Appl Bacteriol 75:215–219

    Article  CAS  Google Scholar 

  • Kelly JJ, Policht K, Grancharova T, Hundal LS (2011) Distinct responses in ammonia oxidizing archaea and bacteria after addition of biosolids to an agricultural soil. Appl Environ Microbiol 77:6551–6558

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31:1737–1744

    Article  CAS  Google Scholar 

  • Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76:49–63

    Article  CAS  Google Scholar 

  • Koneswaran G, Nierenberg D (2008) Global farm animal production and global warming: impacting and mitigating climate change. Environ Health Perspect 116(5):578–582

    Article  Google Scholar 

  • Kraemer T, Gamble S (2014) Integrating anaerobic digestion with composting. BioCycle 55(10):32

    Google Scholar 

  • Krakat N, Westphal A, Schmidt S, Scherer P (2010) Anaerobic digestion of renewable biomass: thermophilic temperature governs methanogen population dynamics. Appl Environ Microbiol 76:1842–1850

    Article  CAS  Google Scholar 

  • Krishania M, Kumar V, Vijay VK, Malik A (2013) Analysis of different techniques used for improvement of biomethanation process: a review. Fuel 106:1–9

    Article  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  Google Scholar 

  • Labatut RA, Angenent LT, Scott NR (2014) Conventional mesophilic vs. thermophilic anaerobic digestion: A trade-off between performance and stability? Water Res 53:249–258

    Article  CAS  Google Scholar 

  • Lastella G, Testa C, Cornacchia G, Notornicola M, Voltasio F, Sharma VK (2002) Anaerobic digestion of semi-solid organic waste: biogas production and its purification. Energy Convers Manage 43:63–75

    Article  CAS  Google Scholar 

  • Latif MA, Mehta CM, Batstone DJ (2017) Influence of low pH on continuous anaerobic digestion of waste activated sludge. Water Res 113:42–49

    Article  CAS  Google Scholar 

  • Lennox JA, Abrida C, Alabi BN, Akubuenyi FC (2010) Comparative degradation of saw dust by microorganisms isolated from it. Afr J Microbiol Res 4(17):1804–1807

    Google Scholar 

  • Levén L, Eriksson ARB, Schnürer A (2007) Effect of process temperature in bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693

    Article  CAS  Google Scholar 

  • Li D, Yuan Z, Sun Y (2010) Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresour Technol 101:2722–2728

    Article  CAS  Google Scholar 

  • Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energy Rev 15:821–826

    Article  CAS  Google Scholar 

  • Li D, Mei Z, He W, Yuan Y, Yan Z, Li J, Liu X (2016) Biogas production from thermophilic codigestion of air-dried rice straw and animal manure. Int J Energy Res 40:1245–1254

    Article  CAS  Google Scholar 

  • Lin H, Gan J, Rajendran A, Rodrigues Reis CE, Bo Hu B (2015) Phosphorus removal and recovery from digestate after biogas production. In: Biofuels-status and perspectives, pp 517–546

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189

    Article  CAS  Google Scholar 

  • Liu Z, Wei Liao W, Liu Y (2016) A sustainable biorefinery to convert agricultural residues into value-added chemicals. Biotechnol Biofuels 9:197

    Article  CAS  Google Scholar 

  • Lou XF, Nair J (2009) The impact of landfilling and composting on greenhouse gas emissions—a review. Bioresour Technol 100:3792–3798

    Article  CAS  Google Scholar 

  • Lozano CJS, Mendoza MV, de Arango MC, Monroy EFC (2009) Microbiological characterization and specific methanogenic activity of anaerobe sludges used in urban solid waste treatment. Waste Manag 29:704–711

    Article  CAS  Google Scholar 

  • Lukehurst CT, Frost P, Al-Seadi T (2010) Utilisation of digestate from biogas plants as biofertilisers. Task-37—utilisation of digestate from biogas plants. IEA Bioenergy

  • Lutge B, Standish B (2013) Assessing the potential for electricity generation from animal waste biogas on South African farms. Agrekon Agric Econ Res Policy Pract S Afr 52:1–24

    Google Scholar 

  • Ma J, Frear C, Wang Z-W, Yu L, Zhao Q, Li X, Chen S (2013) A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour Technol 134:391–395

    Article  CAS  Google Scholar 

  • Machado DC, Maia CM, Carvalho ID, da Silva NF, Borges André MCDP, Serafini A-B (2006) Microbiological quality of organic vegetables produced in soil treated with different types of manure and mineral fertilizer. Braz J Microbiol 37:538–544

    Article  Google Scholar 

  • Mahanta P, Saha UK, Dewan A, Kalita P, Buragohain B (2005) Biogas digester: a discussion of factors affecting biogas production and field investigation of a novel duplex digester. J Sol Energy Soc India 15(2):1–12

    Google Scholar 

  • Makádi M (2010) Microbiological properties of sandy soils in the Nyírség region (Hungary), affected by organic and inorganic additives. Dissertation, Szent Istvan University

  • Makádi M, Tomócsik A, Orosz V (2012) Digestate: a new nutrient source-review, biogas. In: Sunil Kumar (ed) InTech. ISBN 9789535102045. http://www.intechopen.com/books/biogas/digestate-a-new-nutrient-source-review. Accessed 18 Aug 2017

  • Makádi M, Szegi T, Tomócsik A, Orosz V, Michéli E, Ferenczy A, Posta K, Biró B (2016) Impact of digestate application on chemical and microbiological properties of two different textured soils. Commun Soil Sci Plant Anal 47(2):167–178

    Article  CAS  Google Scholar 

  • Manyi-Loh CE, Mamphweli SN, Meyer EL, Okoh AI, Makaka G, Simon M (2013) Microbial anaerobic digestion (biodigesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy. Int J Environ Res Public Health 10:4390–4417

    Article  Google Scholar 

  • Manyi-Loh CE, Mamphweli SN, Meyer EL, Okoh AI, Makaka G, Simon M (2014) Inactivation of selected bacterial pathogens in dairy cattle manure by mesophilic anaerobic digestion (balloon type digester). Int J Environ Res Public Health 11:7184–7194

    Article  Google Scholar 

  • Manyi-Loh CE, Mamphweli SN, Meyer EL, Okoh AI, Makaka G, Simon M (2016) An overview of the control of bacterial pathogens in cattle manure. Int J Environ Res Public Health 13:843

    Article  Google Scholar 

  • Marti R, Scott A, Tien Y-C, Murray R, Sabourin L, Zhang Y, Toppa E (2013) Impact of manure fertilization on the abundance of antibiotic resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Appl Environ Microbiol 79(18):5701–5709

    Article  CAS  Google Scholar 

  • Maurya DP, Singla A, Negi S (2015) An overview of key treatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotechnol 5:597–609

    Google Scholar 

  • Maynaud G, Pourcher A-M, Zieba C, Cuny A, Druilhe C, Steyer J-P, Wéry N (2016) Persitence and potential viability but non-culturable state of pathogenic bacteria during storage of digestate from agricultural biogas plant. Front Microbiol 7:1469

    Article  Google Scholar 

  • McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schnink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann NY Acad Sci 1125:58–72

    Article  CAS  Google Scholar 

  • McMahon KD, Stroot PG, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions-II: microbial population dynamics. Water Res 35:1817–1827

    Article  CAS  Google Scholar 

  • Mladenovska Z, Ahring BK (2000) Growth kinetics of thermophilic Methanosarcina spp. Isolated from full-scale biogas plants treating animal manure. FEMS Microbiol Ecol 31:225–229

    Article  CAS  Google Scholar 

  • Möller K (2015) Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agron Sustain Dev 35(3):1021–1041

    Article  CAS  Google Scholar 

  • Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth. Eng Life Sci 12(3):242–257

    Article  CAS  Google Scholar 

  • Monfet E, Aubry G, Ramirez AA (2017) Nutrient removal and recovery from digestate: a review of the technology. Biofuels. https://doi.org/10.1080/17597269.2017.1336348

    Article  Google Scholar 

  • Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrére H (2014) Do furanic and phenolic compounds of lignocellulosic and algal biomass hydrolyzate inhibit anaerobic mixed culture? A comprehensive review. Biotechnol Adv 32:934–951

    Article  CAS  Google Scholar 

  • Montgomery LFR, Bochmann G (2014) Pre-treatment of feedstock for enhanced biogas production. Task 37-energy from biogas. IEA Bioenergy, pp 4–22

  • Moraes BS, Petersen SO, Zaiat M, Sommer SG, Triolo JM (2017) Reduction in greenhouse gas emissions from vinasse through anaerobic digestion. Appl Energy 189:21–30

    Article  CAS  Google Scholar 

  • Mukumba P, Makaka G, Mamphweli SN, Simon M, Meyer EL (2012) An insight into the status of biogas digesters technologies in South Africa with reference to the Eastern Cape Province. Fort Hare Pap 19:5–29

    Google Scholar 

  • Muralidharan A (2017) Feasibility, health and economic impact of generating biogas from human excreta for the state of Tamil Nadu, India. Renew Sustain Energy Rev 69:59–64

    Article  Google Scholar 

  • Nabarlatz D-A, Arenas-Beltrán L-P, Herrera-Soracá D-M, Niño-Bonilla D-A (2013) Biogas production by anaerobic digestion of wastewater from palm oil mill industry. CT&F - Ciencia, Tecnología y Futuro 5(2):73–84

    Article  CAS  Google Scholar 

  • Nasir IM, Ghazi TIM, Omar R (2012) Production of biogas from solid organic wastes through anaerobic digestion: a review. Appl Microbiol Biotechnol 95:321–329

    Article  CAS  Google Scholar 

  • Navickas K, Venslauskas K, Petrauskas A, Zuperka V (2013) Influence of temperature variation on biogas yield from industrial wastes and energy plants. In: Engineering for rural development, Jelgava, pp 405–410

  • Nielsen M, Holst-Fischer C, Malmgren-Hansen B, Bjerg-Nielsen M, Kragelund C, Mϕller HB, Mϕrck-Ottosen LD (2017) Small temperature differences can improve the performance of mesophilic sludge-based digesters. Biotechnol Lett 39:1689–1698

    Article  CAS  Google Scholar 

  • Nordberg U (2012) Biogas production. In: Biogas production in Belarus and Sweden. In: Rydén L (ed) The Baltic University Programme, 2012. ISBN: 978-91-86189-14-3

  • Nuchdang S, Frigon J-C, Roy C, Pilon G, Phalakornkule C, Guiot SR (2017) Hydrothermal post-treatment of digestate to maximize methane yield from the anaerobic digestion of microalgae. Waste Manag 71:683–688

    Article  CAS  Google Scholar 

  • Nwanta JA, Onunkwo J, Ezenduka E (2010) Analysis of Nsukka metropolitan abattoir solid waste and its bacterial contents in South Eastern Nigeria: public health implication. Arch Environ Occup Health 65:21–26

    Article  Google Scholar 

  • Odlare M, Pell M (2009) Effect of wood fly ash and compost on nitrification and denitrification in agricultural soil. Appl Energy 86:74–80

    Article  CAS  Google Scholar 

  • Owamah HI, Dahunsi SO, Oranusi US, Alfa MI (2014) Fertilizer and sanitary quality of digestate bio-fertilizer from the co-digestion of food waste and human excreta. Waste Manag 34:747–752

    Article  CAS  Google Scholar 

  • Paavola T, Rintala J (2008) Effects of storage on characteristics and hygienic quality of digestate from four co-digestion concepts of manure and bio waste. Bioresour Technol 99:7041–7050

    Article  CAS  Google Scholar 

  • Padol AR, Malapure CD, Domple VD, Kamdi BP (2015) Occurrence, public health implications and detection of antibacterial drug residues in cow milk. Environ We Int J Sci Technol 10:7–28

    Google Scholar 

  • Pan I, Dam B, Sen SK (2012) Composting of common organic wastes using microbial inoculants. 3 Biotech 2:127–134

    Article  Google Scholar 

  • Pandey PK, Soupir ML (2011) Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures. AMB Express 1:18

    Article  CAS  Google Scholar 

  • Pathak H, Jain N, Bhati A, Mohanty S, Gupta N (2009) Global warming mitigation potential of biogas plants in India. Environ Monit Assess 157(1–4):407–418

    Article  CAS  Google Scholar 

  • Persson M, Jönsson O, Wellinger A (2006) Biogas upgrading to vehicle fuel standards and grid injection. Task 37-energy from biogas and landfill gas. IEA Bioenergy

  • Pham CH, Vu CC, Sommer SG, Bruun S (2014) Factors affecting process temperature and biogas production in small-scale rural Biogas digesters in winter in Northern Vietnam. Asian Australas J Anim Sci 27(7):1050–1056. https://doi.org/10.5713/ajas.2013.13534

    Article  CAS  Google Scholar 

  • Pollard AT, Morra MJ (2017) Estrogens: properties, behaviours and fate in dairy manure amended soils. Environ Rev 25(4):452–462

    Article  CAS  Google Scholar 

  • Popova TP, Zaharinov B, Kaleva MD, Barkov BD, Shindarska Z (2013) Reduction of microorganisms in thermophilic process of anaerobic digestion of cattle manure. Int J Curr Microbiol Appl Sci 2:653–660

    Google Scholar 

  • Pouyat RV, Szlavecz K, Yesilonis ID, Groffman PM, Schwarz K (2010) Chemical, physical and biological characteristics of urban soil. In: Aitkenhead-Peterson J, Volder A (eds) American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, agronomy monograph, vol 55. Urban Ecosystem Ecology, Madison, pp 119–152

    Google Scholar 

  • Rai N, Ashiya P, Rathore DS (2014) Comparative study of the effect of chemical fertilizers and organic fertilizers on Eisenia foetida. Int J Innov Res Sci Eng Technol 3(5):12991–12998

    Google Scholar 

  • Ramanathan V, Feng Y (2009) Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmos Environ 43:37–50

    Article  CAS  Google Scholar 

  • Ramirez WA, Domene X, Ortiz O, Alcaniz JM (2008) Toxic effects of digested, composted and thermally dried sewage sludge on three plants. Bioresour Technol 99(15):7168–7175

    Article  CAS  Google Scholar 

  • Rao PV, Baral SS, Dey R, Mutnuri S (2010) Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renew Sustain Energy Rev 14:2086–2094

    Article  CAS  Google Scholar 

  • Rapport J, Zhang R, Jenkins BM, Williams RB (2008) Current anaerobic digestion technologies used for treatment of municipal organic solid waste. California Integrated Waste Management, Saccremento

    Google Scholar 

  • Raven RPJM, Gregersen KH (2005) Biogas plants in Demark: successes and setbacks. Renew Sustain Energy Rev 1(1):116–132

    Article  Google Scholar 

  • Ribaudo M, Gollehon N, Ailley M, Kaplan J, Johansson R, Agapoff J, Christenan L, Breneman V, Peters M (2003) Manure management for water quality: costs to animal feeding operations of applying manure nutrients to land. In: Agricultural economic report; Unites States Department of Agriculture, Washingston, DC, 2003. No. AER-824, p 97

  • Risberg K (2015) Quality and function of anaerobic digestion residues. Dissertation, Acta Universitatis Agriculturae Sueciae, Uppsala, Sweden

  • Risberg K, Cederlund H, Pell M, Arthurson V, Schnürer A (2017) Comparative characterization of digestate versus pig slurry and cow manure—chemical composition and effect on soil microbial activity. Waste Manag 61:529–538

    Article  CAS  Google Scholar 

  • Rivard JC (1996) The anaerobic digestion process. In: Lusk P, Wheeler P, Rivard C (eds) Deploying anaerobic digesters: current status and future possibilities. National Renewable Laboratory, NRELfTP-427-20558

  • Rivas-Solano O, Faith-Vargas M, Guillén-Watson R (2016) Biodigesters: chemical, physical and biological factors related to their productivity. Edicíon especial inglés, Febrero, Tecnologia en Marcha, pp 47–53

  • Romero-Güiza AS, Mata-Alvarez J, Chimenos Rivera JM, Astals Garcia S (2016) Nutrient recovery technologies for anaerobic digestion systems: an overview. Rev Ion 29(1):7–26

    Google Scholar 

  • Ronquest LC, Britz TJ (1999) Influence of lower substrate pH and retention time on the efficiency of a UASB bioreactor treating winery waste water. S Aft J Enol Vitic 20(1):35–41

    CAS  Google Scholar 

  • Ros GH, Temminghoff EJM, Hoffland E (2011) Nitrogen mineralization: a review and meta-analysis of the predictive value of soil tests. Eur J Soil Sci 62:162–173

    Article  CAS  Google Scholar 

  • Sahlström L (2003) A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour Technol 87:161–166

    Article  Google Scholar 

  • Sambusiti C, Rollini M, Ficara E, Musatti A, Manzoni M, Malpei F (2014) Enzymatic and metabolic activities of four anaerobic sludges and their impact on methane production from ensiled sorghum forage. Bioresour Technol 155:122–128

    Article  CAS  Google Scholar 

  • Sambusiti C, Monlau F, Barakat A (2016) Bioethanol fermentation as alternative valorization route of agricultural digestate according to a bio refinery approach. Bioresour Technol 212:289–295

    Article  CAS  Google Scholar 

  • Sanyal O, Liu Z, Meharg BM, Liao W, Lee I (2015) Development of polyelectrolyte multilayer membranes to reduce the COD level of electrocoagulation treated high-strength wastewater. J Membr Sci 496:259–266

    Article  CAS  Google Scholar 

  • Sapp M, Harrison M, Hany U, Charlton A, Thwaites R (2015) Comparing the effect of digestate and chemical fertilizer on soil bacteria. Appl Soil Ecol 86:1–9

    Article  Google Scholar 

  • Schirmer WN, Jucá JFT, Schuler ARP, Holanda S, Jesus LL (2014) Methane production in anaerobic digestion of organic waste from Recife (Brazil) landfill: evaluation in refuse of different ages. Braz J Chem Eng 31(02):373–384

    Article  Google Scholar 

  • Schwede S, Rehman Z-U, Gerber M, Theiss C, Span R (2013) Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis salina biomass. Bioresour Technol 143:505–511

    Article  CAS  Google Scholar 

  • Shah FA, Mahmood Q, Shah MM, Arshid Pervez A, Asad SA (2014) Microbial Ecology of anaerobic digesters: the key players of anaerobiosis. Sci World J 2014:21

    Google Scholar 

  • Sheng PX, Ting YP, Chen JP (2007) Biosorption of heavy metal ions (Pb, Cu, and Cd) from aqueous solutions by the Marine Alga Sargassum sp. in single- and multiple-metal systems. Ind Eng Chem Res 46:2438–2444

    Article  CAS  Google Scholar 

  • Shi X-S, Dong J-J, Yu J-H, Yin H, Hu S-M, Huang S-X, Yaun X-Z (2017) Effect of hydraulic retention time on anaerobic digestion of wheat straw in semicontinuous continuous stirred-tank reactors. Biomed Res Int 2017. ID 2457805

  • Singh S, Kaushik KS, Prashanth B, Nayak SK (2018) Factors affecting anaerobic digestion of organic waste. Int J Eng Res Mech Civ Eng 3(20):99–108

    Google Scholar 

  • Song W, Ding Y, Chiou CT, Li H (2010) Selected veterinary pharmaceuticals in agricultural water and soil from land application of animal manure. J Environ Qual 39(4):1211–1217

    Article  CAS  Google Scholar 

  • Strik DPBTB, Domnanovich AM, Holubar P (2006) A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochem 41:1235–12381236

    Article  CAS  Google Scholar 

  • Sun L, Wan S, Luo W (2013) Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies. Bioresour Technol 140:406–413

    Article  CAS  Google Scholar 

  • Sun L, Liu T, Müller B, Schnürer A (2016) The microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests. Biotechnol Biofuels 9:128

    Article  CAS  Google Scholar 

  • Sund Energy AS (2010) Mapping biogas in the Nordic countries. Nordic Energy Research, Oslo

    Google Scholar 

  • Sundqvist J-O (2006) Assessment of organic waste treatment. In: Dewulf J, van Langenhove H (eds) Renewable-based technology. Wiley, Hoboken, p 248

    Google Scholar 

  • Świątczak P, Cydzik-Kwiatkowska A, Rusanowska P (2017) Microbiota of anaerobic digesters in a full-scale wastewater treatment plant. Arch Environ Prot 43(3):53–60

    Article  Google Scholar 

  • Tambone F, Terruzzi L, Scaglia B, Adani F (2015) Composting of the solid fraction of digestate derived from pig slurry: biological processes and compost properties. Waste Manag 35:55–61

    Article  CAS  Google Scholar 

  • Tang YQ, Shigematsu T, Morimura S, Kida K (2007) Effect of dilution rate on the microbial structure of a mesophilic butyrate-degrading methanogenic community during continuous cultivation. Appl Microbiol Biotechnol 75:451–465

    Article  CAS  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment and reuse. Metcalf and Eddy, Inc., New Delhi

    Google Scholar 

  • Teghammar E, Castilla MDP, Ascue J, Niklasson C (2013) Improved anaerobic digestion by the addition of paper tube residues: pretreatment, stabilizing and synergistic effects. Energy Fuels 27:277–284

    Article  CAS  Google Scholar 

  • Torres-Climent A, Martin-Mata J, Marhuenda-Egea F, Moral R, Barber X, Perez-Murcia MD, Paredes C (2015) Composting of the solid phase of digestate from biogas production: optimization of the moisture, C/N ratio, and pH condition. Commun Soil Sci Plant Anal 46(1):197–207

    Article  Google Scholar 

  • Trosvik P, de Muinck EJ (2015) Ecology of bacteria in the human gastrointestinal tract-identification of keystone and foundation taxa. Microbiome 3:44

    Article  Google Scholar 

  • Tsavkelova EA, Netrusov AI (2012) Biogas production from cellulose-containing substrates: a review. Appl Biochem Microbiol 48:421–433

    Article  CAS  Google Scholar 

  • Vandegehuchte ML, de la Peňa E, Bonte D (2010) Relative importance of biotic and abiotic soil components to plant growth and insect herbivore population dynamics. PLoS ONE 5(9):e12937

    Article  CAS  Google Scholar 

  • Vaneeckhaute C, Lebuf V, Michels E, Belia E, Vanrolleghem PA, Tack FMG, Meers E (2017) Nutrient recovery from digestates: systematic technology review and product classification. Waste Biomass Valor 8:21–40

    Article  CAS  Google Scholar 

  • Venkiteshwaran K, Bocher B, Maki J, Zitome D (2015) Relating anaerobic digestion microbial community and process function. Microbiol Insights 8(S2):37–44. https://doi.org/10.4137/MBI.S33593

    Article  Google Scholar 

  • Vijayvergia (2008) Eutrophication: a case study of highly eutrophicated Lake Udaisagar, Udaipur (Raj), India with regards to its nutrient enrichment and emerging consequences. In: Sengupta M, Dalwani R (eds) Proceedings of Taal 2007: the 12th World Lake conference, pp 1557–1560

  • Wagner AO, Gstraunthaler G, Illmer P (2008) Survival of bacterial pathogens during the thermophilic anaerobic digestion of biowaste: laboratory experiments and in situ validation. Anaerobe 14:181–183

    Article  CAS  Google Scholar 

  • Wahid R, Hjorth M, Kristensen S, Møller HB (2015) Extrusion as pretreatment for boosting methane production: effect of screw configurations. Energy Fuels 29:4030–4037

    Article  CAS  Google Scholar 

  • Walker L, Charles W, Cord-Ruwisch R (2009) Comparison of static, in vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes. Bioresour Technol 100:3799–3807

    Article  CAS  Google Scholar 

  • Wallace WL, Wu HO, Wang ZY (2006) Boosting the market for the commercialization of industrial scale biogas projects in China. www.martinot.info/Wallace_et_al_biogas-GWREF2006

  • Wang X, Lu X, Li F, Yang G (2014) Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition. PLoS ONE 9:e97265. https://doi.org/10.1371/journal.pone.0097265

    Article  CAS  Google Scholar 

  • Watcharasukarn M, Kaparaju P, Steyer J-P, Krogfelt KA, Angelidaki I (2009) Screening Escherichia coli, Enterococcus faecalis, and Clostridium perfringens as indicator organisms in evaluating pathogen-reducing capacity. Microb Ecol 58:221–230

    Article  Google Scholar 

  • Weedermann M, Seo G, Wolkowicz G (2013) Mathematical model of anaerobic digestion in a chemostat: effects of syntrophy and inhibition. J Biol Dynam 7:59–85

    Article  Google Scholar 

  • Wegener C (2012) Improving food safety through a one health approach. National Academies Press, Washington, DC

    Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  Google Scholar 

  • Wellinger A (1996) Economic viability of anaerobic digestion. In: Lusk P, Wheeler P, Rivard C (eds) Deploying anaerobic digesters: current status and future possibilities; Task no.WM 513231. National Renewable Energy Laboratory, Springfield, pp 57–66

    Google Scholar 

  • Wilkie AC (2005) Anaerobic digestion: biology and benefits. In: Dairy manure management: treatment, handling and community relations. NRAES-176, Natural Resource, Agriculture and Engineering Service, 15–17 March, Cornell University, Ithaca, NY, pp 63–72

  • Wilkie AC (2008) Biomethane from biomass, biowaste and biofuels. In: Wall JD, Harwood C, Deamin AL (eds) Bioenergy. ASM Press, Washingston, DC, pp 195–215

    Chapter  Google Scholar 

  • Xia A, Murphy JD (2016) Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol 34(4):264–275

    Article  CAS  Google Scholar 

  • Yadvika S, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques—a review. Bioresour Technol 95(1):1–10

    Article  CAS  Google Scholar 

  • Zeng Y, De Guardia A, Dabert P (2016) Improving composting as a post treatment for anaerobic digestate. Bioresour Technol 201:293–303

    Article  CAS  Google Scholar 

  • Zhong Y, Liu Z, Isaguirre C, Liu Y, Liao W (2016) Fungal fermentation on anaerobic digestate for lipid-based biofuel production. Biotechnol Biofuels 9:253

    Article  CAS  Google Scholar 

  • Ziemiński K, Frąc M (2012) Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms. Afr J Biotechnol 11(18):4127–4139

    Google Scholar 

  • Zuliani L, Frison N, Jelic A, Fatone F, Bolzonella D, Ballottari M (2016) Microalgae cultivation on anaerobic digestate of municipal wastewater, sewage sludge and agro-waste. Int J Mol Sci 17:1692

    Article  CAS  Google Scholar 

  • Zupančič GD, Grilc V (2012) Anaerobic treatment and biogas production from organic waste, management of organic waste. In: Sunil Kumar (ed) 2011. InTech. ISBN: 978-953-307-925-7. http://www.intechopen.com/books/management-of-organicwaste/anaerobic-treatment-and-biogas-productionfrom-organic-wastes. Accessed 18 Aug 2016

Download references

Acknowledgements

We are grateful to National Research Foundations/Department of Science and Technology (Grant No. 98031), South Africa, for their financial support. Special thanks also to the Institute of Technology and Govan Mbeki Research and Development Centre (C702 and C114), University of Fort Hare for financial support. We equally appreciate the financial help offered to us by the South Africa Medical Research Council via the available equipment placed to my disposal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. E. Manyi-Loh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: Abhishek RoyChowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manyi-Loh, C.E., Mamphweli, S.N., Meyer, E.L. et al. Microbial anaerobic digestion: process dynamics and implications from the renewable energy, environmental and agronomy perspectives. Int. J. Environ. Sci. Technol. 16, 3913–3934 (2019). https://doi.org/10.1007/s13762-019-02380-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02380-w

Keywords

Navigation