Skip to main content

Anaerobic Digestion: Climate Change Mitigation Through Sustainable Organic Waste Valorization

  • Living reference work entry
  • First Online:
Handbook of Nature-Based Solutions to Mitigation and Adaptation to Climate Change

Abstract

A tremendous amount of organic waste produced annually is often burned in the open or disposed in unmanaged open dumps, landfills, and wastewater streams. Organic waste naturally decomposes to release greenhouse gases that contribute to climate change. However, organic waste can be anaerobically digested to produce methane, which can be captured and utilized as an alternative to fossil fuel-derived energy. Moreover, an additional product of anaerobic digestion, digestate, can be utilized as a soil ameliorant. This chapter provides an overview of the multi-faceted benefits of using anaerobic digestion as a nature-based solution to climate change mitigation through the valorization of organic wastes that emit greenhouse gases. Insights into some opportunities and challenges that are associated with anaerobic digestion as a solution for lowering greenhouse gas emissions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adejumo IO, Adebiyi OA (2020) Agricultural solid wastes: causes, effects, and effective management. In: Saleh HM (ed) Strategies of sustainable solid waste management. IntechOpen, London

    Google Scholar 

  • Adeleke RA, Nunthkumar B, Roopnarain A, Obi L (2019) Applications of plant–microbe interactions in agro-ecosystems. In: Microbiome in plant health and disease. Springer, pp 1–34

    Google Scholar 

  • Ainger C, Butler D, Caffor I, et al (2009) A low carbon water industry in 2050. In: Report: SC070010. Environment agency, pp 1–48

    Google Scholar 

  • Arancon RAD, Lin CSK, Chan KM et al (2017) Advances on waste valorization: new horizons for a more sustainable society. In: Waste management and valorization. Apple Academic Press, pp 23–66

    Chapter  Google Scholar 

  • Arif S, Liaquat R, Adil M (2018) Applications of materials as additives in anaerobic digestion technology. Renew Sust Energ Rev 97:354–366

    Article  CAS  Google Scholar 

  • Arneth A, Barbosa H, Benton T, et al (2019) IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Summ Policy Makers Geneva Intergov Panel Clim Chang

    Google Scholar 

  • Babaee A, Shayegan J, Roshani A (2013) Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature. J Environ Health Sci Eng 11:1–6

    Article  Google Scholar 

  • Banks C, Heaven S, Zhang Y, Baier U (2018) Food waste digestion: anaerobic digestion of food waste for a circular economy. IEA Bioenergy, Paris

    Google Scholar 

  • Béghin-Tanneau R, Guérin F, Guiresse M et al (2019) Carbon sequestration in soil amended with anaerobic digested matter. Soil Tillage Res 192:87–94

    Article  Google Scholar 

  • Bhada-Tata P, Hoornweg D (2016) Solid waste and climate change. In: State of the World. Springer, pp 239–255

    Chapter  Google Scholar 

  • Bracmort K (2010). Anaerobic digestion: greenhouse gas emission reduction and energy generation. In: Congressional research service report for congress (Report #R40667). https://crsreports.congress.gov/product/details?prodcode=R40667. Accessed 24 July 2023.

  • Chen Y-C, Kuo J (2016) Potential of greenhouse gas emissions from sewage sludge management: a case study of Taiwan. J Clean Prod 129:196–201

    Article  CAS  Google Scholar 

  • Daniel TC, Sharpley AN, Stewart SJ, Smith SJ (1993). Environmental impact of animal manure management in the southern plains. In: International Summer Meeting, 20-23 June 1993, Spokane, WA, Paper No. 934011. American Society of Agricultural Engineers, Washington, USA.

    Google Scholar 

  • Ding A, Zhang R, Ngo HH et al (2021) Life cycle assessment of sewage sludge treatment and disposal based on nutrient and energy recovery: a review. Sci Total Environ 769:144451

    Article  CAS  Google Scholar 

  • Duque-Acevedo M, Belmonte-Urena LJ, Cortés-García FJ, Camacho-Ferre F (2020) Agricultural waste: review of the evolution, approaches and perspectives on alternative uses. Glob Ecol Conserv 22:e00902

    Article  Google Scholar 

  • Eid EM, Alrumman SA, El-Bebany AF et al (2019) Evaluation of the potential of sewage sludge as a valuable fertilizer for wheat (Triticum aestivum L.) crops. Environ Sci Pollut Res 26:392–401

    Article  CAS  Google Scholar 

  • EPA (2012) Global anthropogenic non-CO2 greenhouse gas emissions: 1990–2030. https://www.epa.gov/sites/default/files/201608/documents/epa_global_nonco2_projections_dec2012.pdf. Accessed 21 Feb 2022

  • EPA (2021) AgSTAR data and trends. https://www.epa.gov/agstar/agstar-data-and-trends. Accessed 16 May 2022

  • Eriksson M, Strid I, Hansson P-A (2015) Carbon footprint of food waste management options in the waste hierarchy–a Swedish case study. J Clean Prod 93:115–125

    Article  Google Scholar 

  • Evans TD, Evans TIM, Stonecroft PL, Ashtead KE (2009) Climate change impacts of food waste diversion to anaerobic digesters. Oceania 8000:10000

    Google Scholar 

  • Faragò M, Damgaard A, Madsen JA et al (2021) From wastewater treatment to water resource recovery: environmental and economic impacts of full-scale implementation. Water Res 204:117554

    Article  Google Scholar 

  • Fiodor A, Singh S, Pranaw K (2021) The contrivance of plant growth promoting microbes to mitigate climate change impact in agriculture. Microorganisms 9:1841

    Article  CAS  Google Scholar 

  • Gao A, Tian Z, Wang Z et al (2017) Comparison between the technologies for food waste treatment. Energy Procedia 105:3915–3921

    Article  CAS  Google Scholar 

  • García-Aljaro C, Blanch AR, Campos C et al (2019) Pathogens, faecal indicators and human-specific microbial source-tracking markers in sewage. J Appl Microbiol 126:701–717

    Article  Google Scholar 

  • Gerber PJ, Hristov AN, Henderson B et al (2013) Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal 7:220–234

    Article  Google Scholar 

  • Goberna M, Simón P, Hernández MT, García C (2018) Prokaryotic communities and potential pathogens in sewage sludge: response to wastewaster origin, loading rate and treatment technology. Sci Total Environ 615:360–368

    Article  CAS  Google Scholar 

  • Gregory R, Stalleicken J, Lane R, et al (2014) Review of landfill methane emissions modelling. Rep No 13514290381506/A 1

    Google Scholar 

  • Grossi G, Goglio P, Vitali A, Williams AG (2019) Livestock and climate change: impact of livestock on climate and mitigation strategies. Anim Front 9:69–76

    Article  Google Scholar 

  • Gustafsson J, Cederberg C, Sonesson U, Emanuelsson A (2013) The methodology of the FAO study: global food losses and food waste-extent, causes and prevention”-FAO, 2011

    Google Scholar 

  • Herbig FJW (2019) Talking dirty-effluent and sewage irreverence in South Africa: a conservation crime perspective. Cogent Soc Sci 5:1701359

    Google Scholar 

  • Hoque M, Mondal S, Adusumilli S (2022) Way forward for sustainable livestock sector. In: Emerging issues in climate smart livestock production. Elsevier, pp 473–488

    Chapter  Google Scholar 

  • Hua H, Jiang S, Yuan Z et al (2022) Advancing greenhouse gas emission factors for municipal wastewater treatment plants in China. Environ Pollut 295:118648

    Article  CAS  Google Scholar 

  • Huynh LT, Harada H, Fujii S et al (2021) Greenhouse gas emissions from blackwater septic systems. Environ Sci Technol 55:1209–1217

    Article  CAS  Google Scholar 

  • IPCC (2006). 2006 IPCC Guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. Eggleston HS, Buendia L, Miwa K, Ngara T and Tanabe K (eds). IGES, Japan

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change [Core Writing Team, Pachauri RK, Meyer LA (eds)], Geneva

    Google Scholar 

  • Johnston AM, Bruulsema TW (2014) 4R nutrient stewardship for improved nutrient use efficiency. Procedia Eng 83:365–370

    Article  Google Scholar 

  • Kakadellis S, Lee P-H, Harris ZMM (2022) Two birds with one stone: bioplastics and food waste anaerobic co-digestion. Environments 9:9

    Article  Google Scholar 

  • Kelessidis A, Stasinakis AS (2012) Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag 32:1186–1195

    Article  CAS  Google Scholar 

  • Kirchmann H, Börjesson G, Kätterer T, Cohen Y (2017) From agricultural use of sewage sludge to nutrient extraction: a soil science outlook. Ambio 46:143–154

    Article  CAS  Google Scholar 

  • Korbag I, Omer SMS, Boghazala H, Abusasiyah MAA (2020) Recent advances of biogas production and future perspective. In: Biogas-recent advances and integrated approaches. IntechOpen, p 3

    Google Scholar 

  • Koutsou OP, Gatidou G, Stasinakis AS (2018) Domestic wastewater management in Greece: Greenhouse gas emissions estimation at country scale. J Clean Prod 188:851–859

    Article  CAS  Google Scholar 

  • Li K, Liu R, Cui S et al (2018) Anaerobic co-digestion of animal manures with corn stover or apple pulp for enhanced biogas production. Renew Energy 118:335–342

    Article  CAS  Google Scholar 

  • Liebetrau J, Rensberg N, Maguire D et al (2021) Renewable gas–discussion on the state of the industry and its future in a decarbonised world. In: IEA Bioenergy Task, p 11

    Google Scholar 

  • Lin L (2020) Carbon emission assessment of wastewater treatment plant based on accounting perspective. In: E3S web of conferences. EDP Sciences, p 4049

    Google Scholar 

  • Liu Z, Wang X (2020) Manure treatment and utilization in production systems. In: Animal Agriculture. Elsevier, pp 455–467

    Chapter  Google Scholar 

  • Logan M, Visvanathan C (2019) Management strategies for anaerobic digestate of organic fraction of municipal solid waste: current status and future prospects. Waste Manag Res 37:27–39

    Article  CAS  Google Scholar 

  • Loyon L (2018) Overview of animal manure management for beef, pig, and poultry farms in France. Front Sustain Food Syst 2:36

    Article  Google Scholar 

  • Ma Z-Y, Feng P, Gao Q-X et al (2015) CH4 emissions and reduction potential in wastewater treatment in China. Adv Clim Chang Res 6:216–224

    Article  Google Scholar 

  • Mamais D, Noutsopoulos C, Dimopoulou A et al (2015) Wastewater treatment process impact on energy savings and greenhouse gas emissions. Water Sci Technol 71:303–308

    Article  CAS  Google Scholar 

  • Mannina G, Ekama G, Caniani D et al (2016) Greenhouse gases from wastewater treatment – a review of modelling tools. Sci Total Environ 551:254–270

    Article  Google Scholar 

  • Massara TM, Malamis S, Guisasola A et al (2017) A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci Total Environ 596:106–123

    Article  Google Scholar 

  • Masson-Delmotte V, Zhai P, Pirani A et al (2021) Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. IPCC Geneva, Switz

    Google Scholar 

  • Misra AK (2014) Climate change and challenges of water and food security. Int J Sustain Built Environ 3:153–165

    Article  Google Scholar 

  • Möller K (2015) Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agron Sustain Dev 35:1021–1041

    Article  Google Scholar 

  • Mouele ESM, Tijani JO, Fatoba OO, Petrik L (2015) Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations – a critical review. Environ Sci Pollut Res 22:18345–18362

    Article  CAS  Google Scholar 

  • Nagarajan D, Lee D-J, Chang J-S (2019) Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. Bioresour Technol 290:121804

    Article  CAS  Google Scholar 

  • Naidoo S, Olaniran AO (2014) Treated wastewater effluent as a source of microbial pollution of surface water resources. Int J Environ Res Public Health 11:249–270

    Article  Google Scholar 

  • Ndambi OA, Pelster DE, Owino JO et al (2019) Manure management practices and policies in sub-Saharan Africa: implications on manure quality as a fertilizer. Front Sustain Food Syst 3:29

    Article  Google Scholar 

  • Neczaj E, Grosser A (2018) Circular economy in wastewater treatment plant–challenges and barriers. Multidiscip Digit Publ Inst Proc 2:614

    Google Scholar 

  • Neshat SA, Mohammadi M, Najafpour GD, Lahijani P (2017) Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew Sust Energ Rev 79:308–322

    Article  CAS  Google Scholar 

  • Nkuna R, Roopnarain A, Rashama C, Adeleke R (2021) Insights into organic loading rates of anaerobic digestion for biogas production: a review. Crit Rev Biotechnol:1–21

    Google Scholar 

  • Nordahl SL, Devkota JP, Amirebrahimi J et al (2020) Life-cycle greenhouse gas emissions and human health trade-offs of organic waste management strategies. Environ Sci Technol 54:9200–9209

    Article  CAS  Google Scholar 

  • Paolini V, Petracchini F, Segreto M et al (2018) Environmental impact of biogas: A short review of current knowledge. J Environ Sci Heal Part A 53:899–906

    Article  CAS  Google Scholar 

  • Paritosh K, Kushwaha SK, Yadav M et al (2017) Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed Res Int 2017

    Google Scholar 

  • Peng W, Pivato A (2019) Sustainable management of digestate from the organic fraction of municipal solid waste and food waste under the concepts of back to earth alternatives and circular economy. Waste Biomass Valorization 10:465–481

    Article  CAS  Google Scholar 

  • Poore J, Nemecek T (2018) Reducing food’s environmental impacts through producers and consumers. Science 360(80):987–992

    Article  CAS  Google Scholar 

  • Raimi A, Roopnarain A, Adeleke R (2021) Biofertilizer production in Africa: current status, factors impeding adoption and strategies for success. Sci African 11:e00694

    CAS  Google Scholar 

  • Rao P, Rathod V (2019) Valorization of food and agricultural waste: a step towards greener future. Chem Rec 19:1858–1871

    Article  CAS  Google Scholar 

  • Reid MC, Guan K, Wagner F, Mauzerall DL (2014) Global methane emissions from pit latrines. Environ Sci Technol 48:8727–8734

    Article  CAS  Google Scholar 

  • Ripple WJ, Smith P, Haberl H et al (2014) Ruminants, climate change and climate policy. Nat Clim Chang 4:2–5

    Article  CAS  Google Scholar 

  • Ritchie H, Roser M (2020) CO2 and greenhouse gas emissions. In: Our world data. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions

  • Roopnarain A, Adeleke R (2017) Current status, hurdles and future prospects of biogas digestion technology in Africa. Renew Sust Energ Rev 67:1162–1179. https://doi.org/10.1016/j.rser.2016.09.087

    Article  CAS  Google Scholar 

  • Roopnarain A, Rama H, Ndaba B et al (2021) Unravelling the anaerobic digestion ‘black box’: biotechnological approaches for process optimization. Renew Sust Energ Rev 152:111717

    Article  CAS  Google Scholar 

  • Roopnarain A, Ndaba B, Rama H et al (2022) Liquid gold: harnessing the potential of digestate to enhance smallholder farmer food security and livelihood. In: Food security for African smallholder farmers. Springer, pp 313–341

    Chapter  Google Scholar 

  • Scialabba N, Jan O, Tostivint C, et al (2013) Food wastage footprint: impacts on natural resources. Summary report

    Google Scholar 

  • Seruga P, Krzywonos M, Seruga A et al (2020) Anaerobic digestion performance: Separate collected vs. mechanical segregated organic fractions of municipal solid waste as feedstock. Energies 13:3768

    Article  CAS  Google Scholar 

  • Shaw K, Kennedy C, Dorea CC (2021) Non-sewered sanitation systems’ global greenhouse gas emissions: balancing sustainable development goal tradeoffs to end open defecation. Sustainability 13:11884

    Article  CAS  Google Scholar 

  • Shen X, Huang G, Yang Z, Han L (2015) Compositional characteristics and energy potential of Chinese animal manure by type and as a whole. Appl Energy 160:108–119

    Article  CAS  Google Scholar 

  • Siles JA, Vargas F, Gutiérrez MC et al (2016) Integral valorisation of waste orange peel using combustion, biomethanisation and co-composting technologies. Bioresour Technol 211:173–182

    Article  CAS  Google Scholar 

  • Slorach PC, Jeswani HK, Cuéllar-Franca R, Azapagic A (2019) Environmental sustainability of anaerobic digestion of household food waste. J Environ Manag 236:798–814

    Article  CAS  Google Scholar 

  • Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ 133:247–266

    Article  CAS  Google Scholar 

  • Song B, Manu MK, Li D et al (2021) Food waste digestate composting: Feedstock optimization with sawdust and mature compost. Bioresour Technol 341:125759

    Article  CAS  Google Scholar 

  • Tilley E (2014) Compendium of sanitation systems and technologies. Eawag

    Google Scholar 

  • Törnwall E, Pettersson H, Thorin E, Schwede S (2017) Post-treatment of biogas digestate–an evaluation of ammonium recovery, energy use and sanitation. Energy Procedia 142:957–963

    Article  Google Scholar 

  • Tseng LY, Robinson AK, Zhang X et al (2016) Identification of preferential paths of fossil carbon within water resource recovery facilities via radiocarbon analysis. Environ Sci Technol 50:12166–12178

    Article  CAS  Google Scholar 

  • Turon X, Venus J, Arshadi M et al (2014) Food waste and byproduct valorization through bio-processing: Opportunities and challenges. Bioresources 9:5774–5777

    Article  Google Scholar 

  • USGS (2018) Wastewater treatment water use. https://www.usgs.gov/special-topics/water-science-school/science/wastewater-treatment-water-use. Accessed 20 Feb 2022

  • Walling E, Vaneeckhaute C (2020) Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. J Environ Manag 276:111211

    Article  CAS  Google Scholar 

  • Walsh JJ, Jones DL, Chadwick DR, Williams AP (2018) Repeated application of anaerobic digestate, undigested cattle slurry and inorganic fertilizer N: Impacts on pasture yield and quality. Grass Forage Sci 73:758–763

    Article  CAS  Google Scholar 

  • Weichenthal S, Kulka R, Lavigne E et al (2017) Biomass burning as a source of ambient fine particulate air pollution and acute myocardial infarction. Epidemiology 28:329

    Article  Google Scholar 

  • World population review (2022) World population review. https://worldpopulationreview.com/. Accessed 15 Feb 2022

  • Yoshida H, Nielsen MP, Scheutz C et al (2015) Effects of sewage sludge stabilization on fertilizer value and greenhouse gas emissions after soil application. Acta Agric Scand Sect B—Soil Plant Sci 65:506–516

    CAS  Google Scholar 

  • Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energ Rev 38:383–392

    Article  Google Scholar 

  • Zhao Y, Yang QS, Yang S et al (2014) Effects of biogas slurry pretreatment on germination and seedling growth of Vicia faba L. In: Advanced materials research. Trans Tech Publications, pp 208–212

    Google Scholar 

  • Zytynska SE, Eicher M, Rothballer M, Weisser WW (2020) Microbial-mediated plant growth promotion and pest suppression varies under climate change. Front Plant Sci 11:1385

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of South Africa (NRF; grant numbers 128307, 121924, 129651, and 128102). Opinions expressed and conclusions reached are those of the authors and are not necessarily endorsed by the NRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haripriya Rama .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rama, H. et al. (2023). Anaerobic Digestion: Climate Change Mitigation Through Sustainable Organic Waste Valorization. In: Leal Filho, W., Nagy, G.J., Ayal, D. (eds) Handbook of Nature-Based Solutions to Mitigation and Adaptation to Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-98067-2_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98067-2_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98067-2

  • Online ISBN: 978-3-030-98067-2

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics