Skip to main content
Log in

Improving incomplete combustion and reducing engine-out emissions in reactivity controlled compression ignition engine fueled by ethanol

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, various fuels with different reactivities were implemented as a strategy to optimize the heat release rate which could be a dominant combustion controller in an internal combustion engine. Using a blend of ethanol and gasoline fuels is one of the best approaches to decrease heat release rate, as well as prolonging combustion duration and retarding combustion phasing. Application of ethanol fuel, however, may lead to misfire and unstable combustion in reactivity controlled compression ignition engines. A multi-dimensional model coupled with a detailed chemical kinetic mechanism was applied to investigate the effects of single and double injections within misfire zones in a research engine using iso-octane, n-heptane, and ethanol fuels. A parametric approach is employed to analyze the engine model behavior through varying energy fraction of fuels through both single and double injections strategies. Three performance maps of engine at varying total fuel energy with different ratios of the port to direct fuel injections have been simulated. The first map is related to using net iso-octane and n-heptane fuels; the other two maps are related to the use of 20% and 40% ethanol fuels instead of net iso-octane fuel, respectively. The results highlight that double injection strategy with the injection timing between 27° and 47° before top dead center is capable of improving misfire points also effective on reducing both nitrogen oxide formation and ringing intensity, as well as improving engine gross indicated efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. U.S. Environmental Protection Agency.

Abbreviations

ATDC:

After top dead center

BSFC:

Brake specific fuel consumption

BTDC:

Before top dead center

CA:

Crank angle

CA10:

The location of 10% MFB

CA50:

The location of 50% MFB

CA90:

The location of 90% MFB

CFD:

Computational fluid dynamic

CO:

Carbon monoxide

CO2:

Carbon dioxide

EGR:

Exhaust gas recirculation

EPA:

Environmental protection agency

ERC:

Engine research center

E20:

20% Ethanol fuel by energy

E40:

40% Ethanol fuel by energy

GIE:

Gross indicated efficiency

HCCI:

Homogeneous charge compression ignition

LHV:

Lower heating value

LTC:

Low-temperature combustion

MEP:

Mean effective pressure

MFB:

Mass fraction burned

NOx :

Nitrogen oxides

PCCI:

Premixed charge compression ignition

PMs:

Particulate matters

PRR:

Pressure rise rate

RCCI:

Reactivity controlled compression ignition

RI:

Ringing intensity

SOI:

Start of injection

TDC:

Top dead center

UHC:

Unburned hydrocarbon

\(B_{1}\) :

Adjustable parameter

\(C_{\text{b}}\) :

Adjustable parameter

\(c_{\varepsilon 1} , c_{\varepsilon 2} ,c_{\varepsilon 3}\) :

RANS model constants

D :

Mass diffusivity of liquid vapor in air

\(D_{0}\) :

Sac diameter

\(d_{0}\) :

Parent parcel diameter

\(d_{2}\) :

Diameter of the smaller droplet

k :

Turbulent kinetic energy

\(\frac{L}{D}\) :

Ratio of the nozzle length to the nozzle diameter

\(M_{\text{m}}\) :

Mass of species m in the cell

\(M_{\text{tot}}\) :

Total mass in the cell

\(P_{\rm{max} }\) :

Peak pressure

Pr :

Prandtl number

R :

Ideal gas constant

r :

Drop radius

\(Sh_{\text{d}}\) :

Sherwood number

S :

Source term (in transport equations)

\(T_{\rm{max} }\) :

Peak temperature

\(Y_{1}^{*}\) :

Vapor mass fraction at the drop’s surface

\(Y_{1}\) :

Vapor mass fraction

\(\varOmega_{\text{KH}}\) :

Calculated frequency

\(\varLambda_{\text{KH}}\) :

Calculated wavelength

\(\alpha\) :

Collision angle

\(\gamma\) :

Specific heat ratio

\(\varepsilon\) :

Dissipation of turbulent kinetic energy

\(\mu_{\text{t}}\) :

Turbulent viscosity

\(\rho_{\text{a}}\) :

Air density

\(\rho_{\text{a}}\) :

Liquid density

\(\rho_{\text{m}}\) :

Density of species m in the cell

\(\rho_{\text{tot}}\) :

Total density in the cell

\(\sigma\) :

Surface tension

\(\sigma_{ij}\) :

Stress tensor

\(\phi\) :

Transported quantity

\(\varGamma_{\phi }\) :

Diffusion coefficient

References

  • Amsden AA, O’rourke P, Butler T (1989) KIVA-II: a computer program for chemically reactive flows with sprays. Los Alamos National Lab, Los Alamos

    Google Scholar 

  • Baumgarten C (2006) Mixture formation in internal combustion engines. Springer, Berlin

    Google Scholar 

  • Benajes J, Pastor JV, García A, Monsalve-Serrano J (2015) The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel 159:952–961. https://doi.org/10.1016/j.fuel.2015.07.064

    Article  CAS  Google Scholar 

  • Curran S, Hanson R, Wagner R (2012) Effect of E85 on RCCI performance and emissions on a multi-cylinder light-duty diesel engine. SAE Technical Paper 2012-01-0376. https://doi.org/10.4271/2012-01-0376

  • Curran S, Hanson R, Wagner R, Reitz RD (2013) Efficiency and emissions mapping of RCCI in a light-duty diesel engine. SAE Technical Paper 2013-01-0289. https://doi.org/10.4271/2013-01-0289

  • Curran S, Gao Z, Wagner R (2014) Reactivity controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle systems simulations with E30 and ULSD. SAE Int J Eng 7:902–912. https://doi.org/10.4271/2014-01-1324

    Article  Google Scholar 

  • Dec JE (2009) Advanced compression-ignition engines—understanding the in-cylinder processes. Proc Combust Inst 32:2727–2742. https://doi.org/10.1016/j.proci.2008.08.008

    Article  CAS  Google Scholar 

  • Dec JE, Yang Y (2010) Boosted HCCI for high power without engine knock and with ultra-low NOx emissions-using conventional gasoline. SAE Int J Eng 3:750–767. https://doi.org/10.4271/2010-01-1086

    Article  Google Scholar 

  • DelVescovo D, Wang H, Wissink M, Reitz RD (2015) Isobutanol as both low reactivity and high reactivity fuels with addition of di-tert butyl peroxide (DTBP) in RCCI combustion. SAE Int J Fuels Lubr 8(2):329–343. https://doi.org/10.4271/2015-01-0839

    Article  CAS  Google Scholar 

  • DelVescovo D, Kokjohn S, Reitz R (2017) The effects of charge preparation, fuel stratification, and premixed fuel chemistry on reactivity controlled compression ignition (RCCI) combustion. SAE Int J Eng 10(4):1491–1505. https://doi.org/10.4271/2017-01-0773

    Article  Google Scholar 

  • Dempsey AB (2013) Dual-fuel reactivity controlled compression ignition (RCCI) with alternative fuels. Doctoral dissertation, The University of Wisconsin-Madison

  • Dempsey AB, Adhikary BD, Viswanathan S, Reitz RD (2012) Reactivity controlled compression ignition using premixed hydrated ethanol and direct injection diesel. J Eng Gas Turbines Power 134:082806. https://doi.org/10.1115/1.4006703

    Article  CAS  Google Scholar 

  • Eng J (2002) Characterization of pressure waves in HCCI combustion. SAE Technical Paper 2002-01-2859. https://doi.org/10.4271/2002-01-2859

  • Fajri HR, Jafari MJ, Shamekhi AH, Jazayeri SA (2017) A numerical investigation of the effects of combustion parameters on the performance of a compression ignition engine toward NOx emission reduction. J Clean Prod 167:140–153. https://doi.org/10.1016/j.jclepro.2017.08.146

    Article  CAS  Google Scholar 

  • Fajri HR, Shamekhi AH, Rezaie S, Jafari MJ, Jazayeri SA (2019) A detailed study of boost pressure and injection timing on an RCCI Engine map fueled with Iso-Octane and n-heptane Fuels. J Appl Fluid Mech 12:1161–1175. https://doi.org/10.29252/jafm.12.04.29492

    Article  Google Scholar 

  • Gonzalez DMA, Lian ZW, Reitz RD (1992) Modeling diesel engine spray vaporization and combustion. SAE transactions, pp 1064–1076. https://doi.org/10.4271/920579

  • Guerrero J (2014) Introduction to computational fluid dynamics: governing equations, turbulence modeling introduction and finite volume discretization basics. State key laboratory of advanced design and manufacturing for vehicle body. Dicat.Unige.It. (n.d.). http://www.dicat.unige.it/guerrero/ofreference/fvm.pdf 

  • Hardy WL, Reitz RD (2006) A study of the effects of high EGR, high equivalence ratio, and mixing time on emissions levels in a heavy-duty diesel engine for PCCI combustion. SAE Technical Paper 2006-01-0026. https://doi.org/10.4271/2006-01-0026

  • Hashizume T, Miyamoto T, Hisashi A, Tsujimura K (1998) Combustion and emission characteristics of multiple stage diesel combustion. SAE Technical Paper 980505. https://doi.org/10.4271/980505

  • Hiroyasu, H., Arai, M., (1990) Structures of fuel sprays in diesel engines. SAE Technical Paper 900475. https://doi.org/10.4271/900475

  • Hiroyasu H, Kadota T (1976) Models for combustion and formation of nitric oxide and soot in direct injection diesel engines. SAE Technical Paper 760129. https://doi.org/10.4271/760129

  • Kokjohn SL, Hanson RM, Splitter DA, Reitz RD (2009) Experiments and modeling of dual-fuel HCCI and PCCI combustion using in-cylinder fuel blending. SAE Tech Pap 2(2):24–39. https://doi.org/10.4271/2009-01-2647

    Article  Google Scholar 

  • Kokjohn S, Hanson R, Splitter D, Kaddatz J, Reitz RD (2011a) Fuel reactivity controlled compression ignition (RCCI) combustion in light-and heavy-duty engines. SAE Int J Eng 4:360–374. https://doi.org/10.4271/2011-01-0357

    Article  Google Scholar 

  • Kokjohn S, Hanson R, Splitter D, Reitz R (2011b) Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. Int J Eng Res 12:209–226. https://doi.org/10.1177/1468087411401548

    Article  CAS  Google Scholar 

  • Ladommatos N, Abdelhalim SM, Zhao H, Hu Z (1998) Effects of EGR on heat release in diesel combustion. SAE Technical Paper 980184. https://doi.org/10.4271/980184

  • Ma S, Zheng Z, Liu H, Zhang Q, Yao M (2013) Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Appl Energy 109:202–212. https://doi.org/10.1016/j.apenergy.2013.04.012

    Article  CAS  Google Scholar 

  • Moukalled F, Mangani L, Darwish M (2016) The finite volume method in computational fluid dynamics. In: Thess A, Moreau R (eds) An advanced introduction with OpenFOAM and Matlab. Springer, Switzerland

    Google Scholar 

  • Naber J, Reitz RD (1988) Modeling engine spray/wall impingement. SAE Technical Paper 880107. https://doi.org/10.4271/880107

  • Nazemi M, Shahbakhti M (2016) Modeling and analysis of fuel injection parameters for combustion and performance of an RCCI engine. Appl Energy 165:135–150. https://doi.org/10.1016/j.apenergy.2015.11.093

    Article  CAS  Google Scholar 

  • O’Rourke PJ (1981) Collective drop effects on vaporizing liquid sprays. Los Alamos National Lab, Los Alamos

    Google Scholar 

  • O’Rourke PJ, Amsden AA (1987) The TAB method for numerical calculation of spray droplet breakup. Los Alamos National Lab, Los Alamos

    Google Scholar 

  • Qian Y, Wang X, Zhu L, Lu X (2015) Experimental studies on combustion and emissions of RCCI (reactivity controlled compression ignition) with gasoline/n-heptane and ethanol/n-heptane as fuels. Energy 88:584–594. https://doi.org/10.1016/j.energy.2015.05.083

    Article  CAS  Google Scholar 

  • Ra Y, Reitz RD (2011) A combustion model for IC engine combustion simulations with multi-component fuels. Combust Flame 158:69–90. https://doi.org/10.1016/j.combustflame.2010.07.019

    Article  CAS  Google Scholar 

  • Ra Y, Yun JE, Reitz RD (2009) Numerical simulation of gasoline-fuelled compression ignition combustion with late direct injection. Int J Veh Des 50:3–34. https://doi.org/10.1504/IJVD.2009.024966

    Article  Google Scholar 

  • Reitz R (1987) Modeling atomization processes in high-pressure vaporizing sprays. Atomisation Spray Technol 3(4):309–337

    CAS  Google Scholar 

  • Reitz R, Bracco F (1986) Mechanisms of breakup of round liquid jets. Encycl Fluid Mech 3:233–249

    Google Scholar 

  • Richards K, Senecal P, Pomraning E (2014) CONVERGE (Version 2.2. 0) Manual, Convergent Science. Inc., Madison. https://convergecfd.com/

  • Schmidt DP, Rutland C (2000) A new droplet collision algorithm. J Comput Phys 164:62–80. https://doi.org/10.1006/jcph.2000.6568

    Article  CAS  Google Scholar 

  • Senecal P, Pomraning E, Richards K, Briggs T, Choi C, McDavid R, Patterson M (2003) Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using CFD and parallel detailed chemistry. SAE Technical Paper 2003-01-1043. https://doi.org/10.4271/2003-01-1043

  • Shundoh S, Komori M, Tsujimura K, Kobayashi S, (1992) NOx reduction from diesel combustion using pilot injection with high pressure fuel injection. SAE Technical Paper 920461. https://doi.org/10.4271/920461

  • Smith GP, Golden DM, Frenklach M, Moriarty NW, Eiteneer B, Goldenberg M, Bowman C, Hanson RK, Song S, Gardiner JWC (1999) GRI-Mech version 3.0

  • Splitter DA (2010) Experimental investigation of fuel reactivity controlled combustion in a heavy-duty internal combustion engine. M.S. thesis - University of Wisconsin–Madison

  • Splitter D, Kokjohn S, Rein K, Hanson R, Sanders S, Reitz RD (2010) An optical investigation of ignition processes in fuel reactivity controlled PCCI combustion. SAE Int J Eng 3(1):142–162. https://doi.org/10.4271/2010-01-0345

    Article  Google Scholar 

  • Splitter D, Hanson R, Kokjohn S, Reitz RD (2011a) Reactivity controlled compression ignition (RCCI) heavy-duty engine operation at mid-and high-loads with conventional and alternative fuels. SAE Technical Paper 2011-01-0363. https://doi.org/10.4271/2011-01-0363

  • Splitter DA, Hanson RM, Reitz RD, Manente V, Johansson B (2011b) Modeling charge preparation and combustion in diesel fuel, ethanol, and dual-fuel PCCI engines. Atomization Sprays. https://doi.org/10.1615/AtomizSpr.2011002836

    Article  Google Scholar 

  • Stiesch G (2013) Modeling engine spray and combustion processes. Springer, Berlin

    Google Scholar 

  • Sun Y (2007) Diesel combustion optimization and emissions reduction using adaptive injection strategies (AIS) with improved numerical models. ProQuest

  • Tong L, Wang H, Zheng Z, Reitz R, Yao M (2016) Experimental study of RCCI combustion and load extension in a compression ignition engine fueled with gasoline and PODE. Fuel 181:878–886. https://doi.org/10.1016/j.fuel.2016.05.037

    Article  CAS  Google Scholar 

  • Uchida N, Daisho Y, Saito T, Sugano H (1993) Combined effects of EGR and supercharging on diesel combustion and emissions. SAE Technical Paper 930601. https://doi.org/10.4271/930601

  • Zheng M, Han X, Asad U, Wang J (2015) Investigation of butanol-fuelled HCCI combustion on a high efficiency diesel engine. Energy Convers Manag 98:215–224. https://doi.org/10.1016/j.enconman.2015.03.098

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has used the experimental data of a single-cylinder Cat® 3401E SCOTE engine for simulation validation, accordingly, the authors acknowledge ERC of the University of Wisconsin–Madison for this information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Fajri.

Additional information

Editorial responsibility: J Aravind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fajri, H.R., Mohebi, M., Adibi-Asl, H. et al. Improving incomplete combustion and reducing engine-out emissions in reactivity controlled compression ignition engine fueled by ethanol. Int. J. Environ. Sci. Technol. 16, 8527–8546 (2019). https://doi.org/10.1007/s13762-019-02328-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02328-0

Keywords

Navigation