Skip to main content

Advertisement

Log in

Role of arbuscular mycorrhizal fungi and Pongamia pinnata for revegetation of tropical open-pit coal mining soils

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Open-pit coal mining activities may cause forest and environmental degradation. Thus, forests need to be reclaimed and revegetated after coal mining. This study aimed to determine the combined effects of arbuscular mycorrhizal fungi (AMF) inoculation on the revegetation of postcoal-mining lands with Pongamia pinnata. This completely randomized study was conducted for 6 months in a greenhouse. The first factor consisted of four different levels based on soil medium type: forest soil, mined-out soil, overburdened soil, and landfill soil. The second factor consisted of three levels based on three different dosages of AMF: control, 2 g of AMF, and 4 g of AMF. Open-pit coal mining activities in East Kalimantan caused serious land degradation in tropical ecosystem. Revegetation with P. pinnata accelerated land reclamation by passing the land preparation stage and decreased the costs of land preparation. Forest soil was the optimal medium for the growth of P. pinnata seedlings. However, when the seedlings were planted in degraded soil of mining, their average height, diameter, and total biomass decreased drastically. The inoculation of 2 g AMF colonized the root and therefore improved growth of seedling. This result may reduce cost of chemical fertilizer. AMF inoculation improved Fe absorption by 11.7% that was higher than that under control, whereas 90.4% of the assimilated Fe was retained in plant roots. Revegetation by exotic fast-growing pioneer legume species of P. pinnata and application of AMF drastically improved some chemical soil properties that suitable for rehabilitation program in tropical post-mining areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agus C (2013) Management of tropical bio-geo-resources through integrated bio-cycle farming system for healthy food and renewable energy sovereignty: sustainable food, feed, fiber, fertilizer, energy, pharmacy for marginalized communities in Indonesia. Proceeding of 2013 IEEE Global Humanitarian Technology Conference (GHTC). www.ieeeghtc.org. San Jose, California USA, 20–23 Oct 2013

  • Agus C (2018) Development of blue revolution through integrated bio-cycles system on tropical natural resources management. In: Leal Filho W, Pociovălișteanu D, Borges de Brito P, Borges de Lima I (eds) World sustainability series: towards a sustainable bioeconomy: principles, challenges and perspectives. Springer, Cham, pp 155–172

    Google Scholar 

  • Agus C, Karyanto O, Hardiwinoto S, Haibara K, Kita S, Toda H (2003) Legume cover crop as a soil amendment in short rotation plantation of tropical forest. J For Environ 45(1):13–19

    Google Scholar 

  • Agus C, Karyanto O, Kita S, Haibara K, Toda H, Hardiwinoto S, Supriyo H, Na’iem M, Wardana W, Sipayung M, Khomsatun Wijoyo S (2004) Sustainable site productivity and nutrient management in a short rotation Gmelina arborea plantation in East Kalimantan, Indonesia. New Forest J 28:277–285

    Article  Google Scholar 

  • Agus C, Sunarminto BH, Suhartanto B, Pertiwiningrum A, Wiratni Setiawan I, Pudjowadi D (2011) Integrated bio-cycles farming system for production of bio-gas through gama digester, gama purification and gama compressing. J Jpn Inst Energy 90(11):1086–1090

    Article  Google Scholar 

  • Agus C, Putra PB, Faridah E, Wulandari D, Napitupulu RNP (2016) Organic carbon stock and their dynamics in rehabilitation ecosystem areas of post open coal mining at tropical region. Procedia Eng 159:329–337

    Article  CAS  Google Scholar 

  • Agus C, Wulandari D, Primananda E, Hendryan A, Harianja V (2017) The role of soil amendment on tropical post tin mining area in Bangka Island Indonesia for dignified and sustainable environment and life. IOP Conf Ser Earth Environ Sci 83:012030

    Article  Google Scholar 

  • Anonymous (2015) Daftar Produksi dan Penjualan Batubara Indonesia. http://www.minerba.esdm.go.id/public/38477/produksi-batubara.html.iakses. Januari 2017

  • Bohre P, Chaubey OP, Singhal PK (2014) Biomass production and carbon sequestration by Pongamia pinnata in tropical environment. Int J Bio-Sci Bio-Technol 6(2):129–140

    Article  Google Scholar 

  • Bucking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by arbuscular mycorrhizal fungus is increased by carbohydrate availability. New Phytol 165(3):889–912

    Article  CAS  Google Scholar 

  • Cahyanti PAB, Agus C (2017) Development of landscape architecture through geo-eco-tourism in tropical karst area to avoid extractive cement industry for dignified and sustainable environment and life. IOP Conf Ser Earth Environ Sci 83:012028

    Article  Google Scholar 

  • Casuarina T (2014) Pengaruh Vinase Sorgum dan Endomikorisa Terhadap Pertumbuhan Semai Pongamia Pinnata. Skripsi S1 (Tidak Dipublikasikan). Institut Pertanian Bogor, Bogor

  • Datar A, Audet P, Mulligan D (2011) Review post-mined land rehabilitation in India: cataloguing plants species used in land revegetation. Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St. Lucia Campus, Brisbane, 4072 QLD, Australia

  • Dewi EN (2016) Pertumbuhan Semai Pongamia Pinnata (L.) Pierre dengan Aplikasi Pupuk Pot Organik pada Media Tanah Tambang Batubara. Skripsi S1 (Tidak Dipublikasikan). Fakultas Kehutanan UGM, Yogyakarta

  • Djaenudin D, Marwan H, Subagyo H, dan Hidayat A (2003) Petunjuk Teknis untuk Komoditas Pertanian. Edisi Pertama tahun 2003. Balai PenelitianTanah, Pusat Penelitian dan Pengembangan Tanah dan Agroklimat, Bogor, Indonesia. ISBN 979-9474-25-6

  • Hall JS, Ashton PMS, Berlyn GP (2003) Seedling performance of four sympatric Entandrophragma species (Meliaceae) under simulated fertility and moisture regimes of a Central African rain forest. J Trop Ecol 19:55–66. https://doi.org/10.1017/s0266467403003079

    Article  Google Scholar 

  • Havlin JL, Beaton JB, Tisdale SL, Nelson WL (1999) Soil fertility and fertilizers. An introduction to nutrient management. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Katoria D, Sehgal D, Kumar S (2013) Environment impact assessment of coal mining. Int J Environ Eng Manag 4(3):245–250

    Google Scholar 

  • Kazakoff SH, Gressho PM, Scott PT (2010) Pongamia pinnata, a sustainable feedstock for biodiesel production. In: Halford NG, Karp A (eds) Energy crops: RSC energy and environment series no. 3. Royal Society of Chemistry, London

    Google Scholar 

  • Kharathanasis AD, Thompson YL (1995) Mineralogy of iron precipitates in a constructed acid mine drainage wetland. Am J Soil Sci 59:1773–1781

    Article  Google Scholar 

  • Klironomosi JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84(9):2292–2301

    Article  Google Scholar 

  • Kumar A, Raghuwanshi R, Upadhyay RS (2010) Arbuscular mycorrhizal technology in reclamation and revegetation of coal mine spoils under various revegetation models. Eng J 2:683–689

    Google Scholar 

  • Kurniaty R, Damayanti RU (2011) Penggunaan Mikoriza dan Pupuk dalam Pertumbuhan Bibit Mimba dan Suren Umur 5 Bulan. Jurnal Penelitian Hutan Tanaman 8(4):207–214

    Article  Google Scholar 

  • Nio SA, Banyo Y (2011) Konsentrasi Klorofil Daun sebagai Indikator Kekurangan Air pada Tanaman. Jurnal Ilmiah Sains 11(2):166–173

    Google Scholar 

  • Nufus M (2016) Efektivitas Mikorisa pada Gempol (Nauclea Orientalis) dalam Reklamasi Lahan Pasca Tambang Batubara. Tesis S2 (Tidak Dipublikasikan). Fakultas Kehutanan Universitas Gadjah Mada, Yogyakarta

  • Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre, Kenya

    Google Scholar 

  • Salt DE, Smith RD, Raskin L (1998) Phytoremediation. Ann Rev Plant Phys Plant Mol Biol 49(1):643–668

    Article  CAS  Google Scholar 

  • Schenck NC (1982) Methods and principles of Mycorrhizal research. The American Phytopathological Society, Minnesota

    Google Scholar 

  • Scott PT, Pregelj L, Chen N, Hadler JS, Djordjevic MA, Gresshoff PM (2008) Pongamia pinnata: untapped resource for the biofuels: industry of the future. Bioenergy Res 1:2

    Article  Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Suhardi Faridah E, Iskandar E, Rahayu S (2006) Mycorrihizal formation and growth of Shorea leprosula in Bukit Suharto after using charcoal and rock phosphate. Plantation technology in tropical forest science. Springer, Tokyo Jepang

    Google Scholar 

  • Taylor MD, Kim ND, Hill RB, Chapman R (2010) A review of soil quality indicators and five key issues after 12 yr soil quality monitoring in the Waikato region. Soil Use Manag 26:212–224

    Article  Google Scholar 

  • Tuheteru FD, Asrianti A, Widiastuti E, Rahmawati N (2017) Heavy metal uptake by indigenous arbuscular mycorrhizas of Nauclea orientalis L. and the potential for phytoremediation of serpentine soil. J For Sci 11(1):76–84. https://doi.org/10.22146/jik.24902

    Article  Google Scholar 

  • Venkatesh L, Naik ST, Suryanarayana V (2009) Survey for occurrence of Arbuscullar Mycorrhizal fungi associated with Jatropha curcas (L). and Pongamia pinnata (L), pierre in three agroclimatic zones of Karnataka. J Agric Sci 22(2):373–376

    Google Scholar 

  • Veronika S (2016) Pertumbuhan Semai Kranji (Pongamia Pinnata) dengan Aplikasi Pupuk Pot Organik pada Berbagai Jenis Tanah Marginal. Skripsi S1 (Tidak Dipublikasikan). Fakultas Kehutanan Universitas Gadjah Mada, Yogyakarta

  • Wulandari D, Saridi, Cheng W, Tawaraya K (2014) Arbuscular mycorrhizal colonization enhanced early growth of Mallotus paniculatus and Albizia saman under nursery condition in East Kalimantan, Indonesia. Int J For Res 2014:898494. https://doi.org/10.1155/2014/898494

    Article  Google Scholar 

Download references

Acknowledgments

The experimental data on which this paper is based were collected from Indonesia Government Research grant, and permission to use this material is gratefully acknowledged. The authors express their greatest gratitude toward the Ministry of Research, Technology and Higher Education RI and UGM, Yogyakarta, Indonesia, for their research and publication funding and to PT Berau Coal for providing field research materials. We also gratefully acknowledge the funding from USAID through the SHERA program—Centre for Development of Sustainable Region (CDSR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Agus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: Shahid Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agus, C., Primananda, E., Faridah, E. et al. Role of arbuscular mycorrhizal fungi and Pongamia pinnata for revegetation of tropical open-pit coal mining soils. Int. J. Environ. Sci. Technol. 16, 3365–3374 (2019). https://doi.org/10.1007/s13762-018-1983-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-018-1983-5

Keywords

Navigation