Skip to main content
Log in

Reinventing rice husk ash: derived NaX zeolite as a high-performing CO2 adsorbent

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this work, rice husk ash was used as silica source to synthesize NaX zeolite potentially suitable for CO2 adsorption. The produced material, denoted NaX-RHA, was characterized employing X-ray diffraction, scanning electron microscopy and gas adsorption porosimetry, in order to verify the occurred production of well-crystallized NaX zeolite with a significant degree of purity. CO2 adsorption isotherms on NaX-RHA were volumetrically evaluated in the 298–348 K temperature range up to standard pressure, revealing performances that are higher than those reported for commercial similar substrates. The experimental data regarding CO2 adsorption on NaX-RHA were very satisfyingly fitted by the semiempirical Sips model. Analyzing the best fitting values of model parameters allowed to conclude that the synthesized adsorbent could be quite suitable for applications like CO2 capture from flue gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aprea P, Caputo D, Gargiulo N, Iucolano F, Pepe F (2010) Modeling carbon dioxide adsorption on microporous substrates: comparison between Cu-BTC metal-organic framework and 13X zeolitic molecular sieve. J Chem Eng Data 55:3655–3661

    Article  CAS  Google Scholar 

  • Arenillas A, Smith KM, Drage TC, Snape CE (2005) CO2 capture using some fly ash-derived carbon materials. Fuel 84:2204–2210

    Article  CAS  Google Scholar 

  • Barth-Wirsching U, Höller H, Klammer D, Konrad B (1993) Synthetic zeolites formed from expanded perlite: type, formation conditions and properties. Miner Petrol 48:275–294

    Article  CAS  Google Scholar 

  • Bedard RL (2010) Synthesis of zeolites and manufacture of zeolitic catalysts and adsorbents. In: Kulprathipanja S (ed) Zeolites in industrial separation and catalysis. Wiley, Weinheim, pp 61–83

    Chapter  Google Scholar 

  • Bhatia S (1990) Zeolite catalysts: principles and applications. CRC Press, Boca Raton

    Google Scholar 

  • Camacho BCR, Ribeiro RPPL, Esteves IAAC, Mota JPB (2015) Adsorption equilibrium of carbon dioxide and nitrogen on the MIL-53(Al) metal organic framework. Sep Purif Technol 141:150–159

    Article  CAS  Google Scholar 

  • Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chemsuschem 2:796–854

    Article  CAS  Google Scholar 

  • Dalai AK, Rao MS (1985) Synthesis of NaX zeolite using silica from rice husk ash. Ind Eng Chem Prod Res Dev 24:465–468

    Article  CAS  Google Scholar 

  • Dalai AK, Pradhan NC, Rao MS, Gokhale KVGK (2005) Synthesis and characterization of NaX and Cu-exchanged NaX zeolites from silica obtained from rice husk ash. Indian J Eng Mater Sci 12:227–234

    CAS  Google Scholar 

  • Do DD (1998) Adsorption analysis: equilibria and kinetics. Imperial College Press, London

    Google Scholar 

  • Gargiulo N, Caputo D, Colella C (2007) Preparation and characterization of polyethylenimine-modified mesoporous silicas as CO2 sorbents. Stud Surf Sci Catal 170:1938–1943

    Article  Google Scholar 

  • Gargiulo N, Aprea P, Caputo D, Eić M, Huang Q, Colella C (2009) Adsorption and diffusion of carbon dioxide in polyethylenimine-modified SBA-15 silicas. In: Acierno D, D’Amore A, Caputo D, Cioffi R (eds) Special topics on materials science and technology—an Italian Panorama. Brill, Leiden, pp 213–220

    Google Scholar 

  • Gargiulo N, Pepe F, Caputo D (2012) Modeling carbon dioxide adsorption on polyethylenimine-functionalized TUD-1 mesoporous silica. J Colloid Interface Sci 367:348–354

    Article  CAS  Google Scholar 

  • Gargiulo N, Peluso A, Aprea P, Pepe F, Caputo D (2014a) CO2 Adsorption on polyethylenimine-functionalized SBA-15 mesoporous silica: isotherms and modeling. J Chem Eng Data 59:896–902

    Article  CAS  Google Scholar 

  • Gargiulo N, Pepe F, Caputo D (2014b) CO2 adsorption by functionalized nanoporous materials: a review. J Nanosci Nanotechnol 14:1811–1822

    Article  CAS  Google Scholar 

  • Gargiulo N, Macario A, Iucolano F, Giordano G, Caputo D (2015a) Modeling the adsorption of CO2/N2 mixtures on siliceous nanoporous materials. Sci Adv Mater 7:258–263

    Article  CAS  Google Scholar 

  • Gargiulo N, Verlotta A, Peluso A, Aprea P, Caputo D (2015b) Modeling the performances of a CO2 adsorbent based on polyethylenimine-functionalized macro-/mesoporous silica monoliths. Microporous Mesoporous Mater 215:1–7

    Article  CAS  Google Scholar 

  • Ghasemi Z, Younesi H (2012) Preparation of free-template nanometer-sized Na–A and –X zeolites from rice husk ash. Waste Biomass Valoriz 3:61–74

    Article  CAS  Google Scholar 

  • Gokhale KVGK, Dalai AK, Rao MS (1986) Thermal characteristics of synthetic sodium zeolites prepared with silica from rice-husk ash. J Therm Anal 31:33–39

    Article  CAS  Google Scholar 

  • Grajciar L, Čejka J, Zukal A, Otero Areán C, Turnes Palomino G, Nachtigall P (2012) Controlling the adsorption enthalpy of CO2 in zeolites by framework topology and composition. Chemsuschem 5:2011–2022

    Article  CAS  Google Scholar 

  • Halmann MM, Steinberg M (1999) Greenhouse gas carbon dioxide mitigation: science and technology. CRC Press, Boca Raton

    Google Scholar 

  • Hasan MMF, Baliban RC, Elia JA, Floudas CA (2012) Modeling, simulation, and optimization of postcombustion CO2 capture for variable feed concentration and flow rate. 1. Chemical absorption and membrane processes. Ind Eng Chem Res 51:15642–15664

    Article  CAS  Google Scholar 

  • Jadhav PD, Chatti RV, Biniwale RB, Labhsetwar NK, Devotta S, Rayalu SS (2007) Monoethanol amine modified zeolite 13X for CO2 adsorption at different temperatures. Energy Fuels 21:3555–3559

    Article  CAS  Google Scholar 

  • Khummongkol P, Anuwattana R (2009) Synthesis of zeolites from industrial wastes. In: Wong TW (ed) Handbook of zeolites: structure, properties and applications. Nova Science Publishers, Hauppauge, pp 469–498

    Google Scholar 

  • Kim J, Lin L-C, Swisher JA, Haranczyk M, Smit B (2012) Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. J Am Chem Soc 134:18940–18943

    Article  CAS  Google Scholar 

  • Kongkachuichay P, Lohsoontorn P (2006) Phase diagram of zeolite synthesized from perlite and rice husk ash. ScienceAsia 32:13–16

    Article  CAS  Google Scholar 

  • Lechert H, Staelin P (2001) FAU—Linde Type X. In: Robson H, Lillerud KP (eds) Verified synthesis of zeolitic materials, 2nd edn. Elsevier, Amsterdam, pp 150–152

    Google Scholar 

  • Lee J-S, Kim J-H, Kim J-T, Suh J-K, Lee J-M, Lee C-H (2002) Adsorption equilibria of CO2 on zeolite 13X and zeolite X/activated carbon composite. J Chem Eng Data 47:1237–1242

    Article  CAS  Google Scholar 

  • Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Kluwer, Dordrecht

    Book  Google Scholar 

  • Martra G, Coluccia S, Davit P, Gianotti E, Marchese L, Tsuji H, Hattori H (1999) Acidic and basic sites in NaX and NaY faujasites investigated by NH3, CO2 and CO molecular probes. Res Chem Intermed 25:77–93

    Article  CAS  Google Scholar 

  • Oreggioni GD, Brandani S, Luberti M, Baykan Y, Friedrich D, Ahn H (2015) CO2 capture from syngas by an adsorption process at a biomass gasification CHP plant: its comparison with amine-based CO2 capture. Int J Greenhouse Gas Control 35:71–81

    Article  CAS  Google Scholar 

  • Pillai RS, Peter SA, Vir Jasra R (2012) CO2 and N2 adsorption in alkali metal ion exchanged X-Faujasite: grand canonical Monte Carlo simulation and equilibrium adsorption studies. Microporous Mesoporous Mater 162:143–151

    Article  CAS  Google Scholar 

  • Querol X, Moreno N, Umaña JC, Alastuey A, Hernández E, López-Soler A, Plana F (2002) Synthesis of zeolites from coal fly ash: an overview. Int J Coal Geol 50:413–423

    Article  CAS  Google Scholar 

  • Santasnachok C, Kurniawan W, Hinode H (2015) The use of synthesized zeolites from power plant rice husk ash obtained from Thailand as adsorbent for cadmium contamination removal from zinc mining. J Environ Chem Eng 3:2115–2126

    Article  CAS  Google Scholar 

  • Shen Y, Zhao P, Shao Q (2014) Porous silica and carbon derived materials from rice husk pyrolysis char. Microporous Mesoporous Mater 188:46–76

    Article  CAS  Google Scholar 

  • Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  • Siriwardane RV, Shen M-S, Fisher EP, Poston JA (2001) Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuels 15:279–284

    Article  CAS  Google Scholar 

  • Song W, Justice RE, Jones CA, Grassian VH, Larsen SC (2004) Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5. Langmuir 20:8301–8306

    Article  CAS  Google Scholar 

  • Structure Commission of the International Zeolite Association (2007) Framework type FAU. Database of zeolite structures. http://izasc.ethz.ch/fmi/xsl/IZA-SC/mat_xrd.xsl?-db=crystal_data&-lay=web&STC=FAU&-find. Accessed 16 Nov 2016

  • Thuadaij P, Nuntiya A (2012) Preparation and characterization of faujasite using fly ash and amorphous silica from rice husk ash. Procedia Eng 32:1026–1032

    Article  CAS  Google Scholar 

  • Victor DG, Zhou D, Ahmed EHM, Dadhich PK, Olivier JGJ, Rogner H-H, Sheikho K, Yamaguchi M (2014) Climate change 2014: mitigation of climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Contribution of working group III to the 5th assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York, pp 111–150

    Google Scholar 

  • Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55

    Article  CAS  Google Scholar 

  • Wu Y-J, Yang Y, Kong X-M, Li P, Yu J-G, Ribeiro AM, Rodrigues AE (2015) Adsorption of Pure and Binary CO2, CH4, and N2 Gas Components on Activated Carbon Beads. J Chem Eng Data 60:2684–2693

    Article  CAS  Google Scholar 

  • Yusof AM, Nizam NA, Abd Rashid NA (2010) Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites. J Porous Mater 17:39–47

    Article  CAS  Google Scholar 

  • Zukal A, Pulido A, Gil B, Nachtigall P, Bludský O, Rubeš M, Čejka J (2010) Experimental and theoretical determination of adsorption heats of CO2 over alkali metal exchanged ferrierites with different Si/Al ratio. Phys Chem Chem Phys 12:6413–6422

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help provided by Dr. Benedetto De Vito (ACLabs—Laboratori di Chimica Applicata, Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II) for performing SEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Caputo.

Additional information

Editorial responsibility: Agnieszka Galuszka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gargiulo, N., Shibata, K., Peluso, A. et al. Reinventing rice husk ash: derived NaX zeolite as a high-performing CO2 adsorbent. Int. J. Environ. Sci. Technol. 15, 1543–1550 (2018). https://doi.org/10.1007/s13762-017-1534-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1534-5

Keywords

Navigation