Skip to main content
Log in

Fatty acid profiling as bioindicator of chemical stress in marine Pterocladia capillacea, Sargassum hornschuchii and Ulva lactuca

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Contaminants are increasing in the aquatic ecosystem due to the development of industrial and agricultural activities. Contaminants include organic pollutants such as pharmaceuticals and endocrine-disrupting compounds, which accumulate in the ecosystem’s primary producers and propagate through the food chain. The total lipid contents and fatty acid profiles in the marine macroalgae Pterocladia capillacea, Ulva lactuca and Sargassum hornschuchii proved to be a good bioindicator to assess contamination levels. The lowest value of the total lipid content was 1.90% obtained in S. hornschuchii under the bisphenol treatment, while the highest value was 4.66% obtained in U. lactuca under exposed to clofibric acid. The fatty acid methyl ester profiles were analysed by using gas chromatography. The total fatty acids varied from 5.85% (U. lactuca after exposure to bisphenol) to 28.38% (P. capillacea treated with clofibric acid). The ratio of saturated to unsaturated fatty acids was significantly higher in U. lactuca after exposure to acetyl salicylic acid than in the other macroalgae under different treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels in internal combustion engines. Prog Energy Combust Sci 32:233–271

    Article  Google Scholar 

  • Akay C, Degim IT, Sayal A, Aydin A, Özkan Y, Gul H (2008) Rapid and simultaneous determination of acetyl salicylic acid, paracetamol, and their degradation products by HPLC in pharmaceutical dosage forms. Turk J Med Sci 38(2):167–173

    CAS  Google Scholar 

  • AOAC (2000) Official methods of analysis of AOAC international, 17th edn. AOAC International, Gaithersburg

    Google Scholar 

  • Banerjee A, Chakraborty R (2009) Parametric sensitivity in trans-esterification of waste cooking oil for biodiesel production a review. Resour Conserv Recycl 53:490–497

    Article  Google Scholar 

  • Barata C, Navarro JC, Varo I, Riva MC, Arun S, Porte C (2005) Changes in enzyme activities, fatty acid composition and lipid peroxidation in Daphnia magna during the aging process. Compar Biochem Physiol B 140(8):1–90

    Google Scholar 

  • Battah M, Al-Ayoty Y, Abomohra A, El-Ghany S, Esmael A (2014) Effect of Mn, Co and H2O2 on biomass and lipids of green algae Chlorella vulgaris as a potential candidate for biodiesel production. Ann Microbiol (In press)

    Article  Google Scholar 

  • Carvalho J, Ribeiro A, Castro J, Vilarinho C, Castro F (2011). Biodiesel production by microalgae and macroalgae from north littoral Portuguese coast. In: 1st international conference on wastes: solutions, treatments and opportunities, Sept 12–14

  • Christie WW (1998) Gas chromatography mass spectrometry methods for structural analysis of fatty acids. Lipids 33(4):343–351

    Article  CAS  Google Scholar 

  • Enweremadu CC, Mbarawa MM (2009) Technical aspects of production and analysis of biodiesel from used cooking oil–a review. Renew Sustain Energy Rev 13:2205–2224

    Article  CAS  Google Scholar 

  • Fakhry E, El Maghraby D (2015) Lipid accumulation in response to nitrogen limitation and variation of temperature in Nannochloropsis salina. Bot stud 56:6–14

    Article  Google Scholar 

  • Filimnova V, Goncalves F, Marques J, De-Troch M, Goncalves M (2016) Fatty acid profiling as bioindicator of chemical stress in marine organisms a review. Ecol Indica 67:657–672

    Article  Google Scholar 

  • Gattulo CE, Bahrs H, Steinberg C, Loffredo E (2012) Removal of bisphenol Aby the fresh water green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506

    Article  Google Scholar 

  • Gerpen V (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  Google Scholar 

  • Gosch BJ, Magnusson M, Paul NA, De Nys R (2012) Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. Bioenergy 4(6):919–930

    CAS  Google Scholar 

  • Gunvachai K, Hassan MG, Shama G, Hellgardt C (2007) A new solubility model to describe biodiesel formation kinetics. Process Saf Environ Protect 85(B5):383–389

    Article  CAS  Google Scholar 

  • Hansen AC, Kyritsis DC, Lee CF (2009) Characteristics of biofuels and renewable fuel standard. In: Vertes AA, Qureshi N, Blaschek HP, Yukawa H (eds) Biomass to biofuels—strategies for global industries. Blackwell Publishing, Oxford

    Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Huerlimann R, de Nys R, Heimann K (2010) Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107:245–257

    Article  CAS  Google Scholar 

  • Hughes AD, Kelly MS, Black KD, Stanley MS (2012) Biogas from macro-algae: is it time to revisit the idea? Biotechnol Biofuels 5:86–93

    Article  Google Scholar 

  • Jensen A (1993) Present and future needs for algae and algal products. Hydrobiologia 260(61):15–23

    Article  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environ-mental factors and nutrient availability on the biochemical com-position of algae for biofuels production: a review. Energies 6:4607–4638

    Article  Google Scholar 

  • Kennish MJ (1996) Practical handbook of estuarine and marine pollution. Marine science series. CRC Press, Boca Raton, p 544

    Google Scholar 

  • Kennish MJ (2000) Practical handbook of marine sciences, 3rd edn. CRC Press, Baca Raton, p 876

    Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty ester com-position to improve fuel properties. Energy Fuels 22:1358–1364

    Article  CAS  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty esters composition. J Energy Environ Sci 10:1039–1054

    Google Scholar 

  • Komninos NP, Rakopoulos CD (2012) Modeling HCCI combustion of biofuels: a review. Renew Sustain Energy Rev 16:1588–1610

    Article  CAS  Google Scholar 

  • Lau-Cam C, Theofanopulos V, Spireas SS (2006) Simplified HPLC method with spectrophotometric detection for the assay of clofibric acid in rat plasma. Plasma J Liq Chromatogr 18:3945–3954

    Article  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102(8):5138–5144

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • McKnight US, Rasmussen JJ, Kronvang B, Bjerg PL, Binning PJ (2012) Integrated assessment of the impact of chemical stressors on surface water ecosystems. Sci Total Environ 427–428:319–331

    Article  Google Scholar 

  • Murphy F, Devlin G, Deverell R, McDonnell K (2013) Biofuel production in Ireland an approach to 2020 targets with a focus on algal biomass. Energies 6:6391–6412

    Article  Google Scholar 

  • Peixoto F, Alves-Fernandes D, Santos D, Fontainhas-Fernandes A (2006) Toxico-logical effects of oxyfluorfen on oxidative stress enzymes in tilapia Oreochromisniloticus. Pestic Biochem Phys 85:91–96

    Article  CAS  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Pinzi S, Garcia IL, Lopez-Gimeme FJ, Luque de Castro MD, Dorado S, Dorado MP (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economic and technical implications. Energy Fuels 23:2325–2341

    Article  CAS  Google Scholar 

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 100:261–268

    Article  CAS  Google Scholar 

  • Rocchetta I, Mazzuca M, Conforti V, Ruiz L, Balzaretti V, De Molina MD (2006) Effect of chromium on the fatty acid composition of tow strains of Euglena gracilis. Environ Pollut 141:353

    Article  CAS  Google Scholar 

  • Sakthivel R, Elumalai S, Arif MM (2011) Microalgae lipid research, past, present: a critical review for biodiesel production, in the future. J Exp Sci 2(10):29–49

    Google Scholar 

  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Singh J, Cu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610

    Article  CAS  Google Scholar 

  • Skerratt JH, Davidson AD, Nichols PD, McMeekin TA (1998) Effect of UV-B on lipid content of three Antarctic marine phytoplankton. Phytochemistry 49(4):999–1007

    Article  CAS  Google Scholar 

  • Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, Cao Y (2014) Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour Technol 155:204–212

    Article  CAS  Google Scholar 

  • Wang J, Xie P, Guo N (2007) Effects of nonylphenol on the growth and microcystin production of Microcystis strains. Environ Res 103:70–78

    Article  CAS  Google Scholar 

  • Williams PJL, Laurens LML (2010) Microalgae as biodiesel, energetics and economics. Energy Environ Sci 3:554–590

    Article  CAS  Google Scholar 

  • Yang S, Wu RS, Kong YC (2002) Biodegradation and enzymatic responses in the marine diatoms upon exposure to 2, 4-dichlorophenol. Aquat Toxicol 59:191–200

    Article  CAS  Google Scholar 

  • Yeh KL, Chang JS (2011) Nitrogen starvation strategies and photobioreactor design for enhancing lipid production of a newly isolated microalga Chlorella vulgarisesp-31: implications for biofuels. Biotechnol J 6:1358–1366

    Article  CAS  Google Scholar 

  • Zabeti M, Daud WM, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90:770–777

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to appreciate all who assisted in conduction of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mohy El-Din.

Additional information

Editorial responsibility: Rupali Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohy El-Din, S.M. Fatty acid profiling as bioindicator of chemical stress in marine Pterocladia capillacea, Sargassum hornschuchii and Ulva lactuca . Int. J. Environ. Sci. Technol. 15, 791–800 (2018). https://doi.org/10.1007/s13762-017-1436-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1436-6

Keywords

Navigation