Skip to main content
Log in

Algal characterization and bioaccumulation of trace elements from polluted water

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Algae are a group of autotropic and eukaryotic organisms that play a significant role in the food, pharmaceutical, cosmetic, fuel, and textile industries. They are an important part of our ecosystem, and they can help control the growing problem of pollution. In this work, the carotenoid, sterol, polyphenol and mineral content, spectral and thermal characteristics of six common river algae, viz. Chara spp., Hydrodictyon spp., Lyngbya spp., Nitella spp., Pithophora spp., and Spirogyra spp., collected from Kharun river (India), were evaluated. The concentration of oil, total polyphenols, flavonoids, and mineral ranged from 0.4 to 4.3%, from 2705 to 4450 mg/kg, from 1590 to 2970 mg/kg, and from 85,466 to 122,871 mg/kg of algae (dw), respectively. The concentration of carotenoids and sterols varied from 1.6 to 109 mg/kg and from 522 to 35,664 mg/kg. The potentiality towards the bioaccumulation of 22 trace elements from the surface reservoir was assessed and discussed in relation to carbonate inlay of the algae wall and to the ions ability to bind to pectin, polypeptides, carotenoids, polyphenols, and flavonoids, on the basis of infrared spectroscopy data. In view of the extremely high enrichment factors found for certain elements, such as P, Co, Cu, Pb, and Fe, some of these algae hold promise as bioindicators for the detection of these elements in aquatic environments. Ordination analysis was used to measure the variance gradient of the algal data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Homaidan, A. A., Alabdullatif, J. A., Al-Hazzani, A. A., Al-Ghanayem, A. A., & Alabbad, A. F. (2015). Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi Journal of Biological Sciences, 22, 795–800. https://doi.org/10.1016/j.sjbs.2015.06.010.

    Article  CAS  Google Scholar 

  • AOCS (American Oil Chemists' Society) Official Method Ce 1h-05. (2005). Determination of cis-, trans-, saturated, monounsaturated and polyunsaturated fatty acids in vegetable or non-ruminant animal oils and fats by capillary GLC. Official methods and recommended practices of the American Oil Chemists’ Society, 5th ed., American Oil Chemists’ Society, Urbana.

  • AOCS (American Oil Chemists’ Society) Official Method Ch 6-91. (1997). Determination of the composition of the sterol fraction of animal and vegetable oils and fats by TLC and capillary GLC. Official methods and recommended practices of the American Oil Chemists’ Society, 4th ed., American Oil Chemists’ Society, USA.

  • APHA: American Public Health Association. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: APHA, AWWA and WEF.

    Google Scholar 

  • Azza, M., Abdel, A., Nabila, S. A., Hany, H. A. G., & Rizka, K. A. (2013). Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. Journal of Advanced Research, 4, 367–374. https://doi.org/10.1016/j.jare.2012.07.004.

    Article  CAS  Google Scholar 

  • BIS (Bureau of Indian Standard). (2009). Drinking water—specification (2nd ed.). New Delhi: http://bis.org.in/sf/fad/FAD25(2047)C.pdf.

  • Brahmbhatt, Rinku, N. H., Patel, V., & Jasrai, R. T. (2012). Removal of cadmium, chromium and lead from filamentous alga of Pithophora sp. of industrial wastewater. International Journal of Environmental Sciences, 3, 408–411. https://doi.org/10.6088/ijes.2012030131035.

    Article  CAS  Google Scholar 

  • Bruker AXS (2008). Cost-effective trace element analysis with TXRF, Brucker 2008. https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/X-rayDiffraction_ ElementalAnalysis/XRF/Webinars/Bruker_AXS_TXRF_Webinar_2-20-2008.PDF.

  • Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.

    CAS  Google Scholar 

  • Cheng, S. Y., Show, P.-L., Lau, B. F., Chang, J.-S., & Ling, T. C. (2019). New prospects for modified algae in heavy metal adsorption. Trends in Biotechnology, 37(11), 1255–1268. https://doi.org/10.1016/j.tibtech.2019.04.007.

    Article  CAS  Google Scholar 

  • Desikachary, T. V. (1959). Cyanophyta. New Delhi: Indian Council of Agricultural Research https://trove.nla.gov.au/version/10699971.

    Google Scholar 

  • Dhillon, M. K., George, M. P., & Mishra, S. (2013). Water quality of river Yamuna – Delhi stretch during idol immersion. International Journal of Environmental Sciences, 3, 1416–1423. https://doi.org/10.6088/ijes.2013030500012.

    Article  CAS  Google Scholar 

  • Dora, S. L., Maiti, S. K., Tiwary, R. K., & Anshumali (2010). Algae as an indicator of river water pollution- a review. Bioscan, 2, 413–422.

  • Elmer, P. (2014). Pyris - instrument managing software (11th ed.). Waltham: PerkinElmer, Inc..

    Google Scholar 

  • Ficarra, R., Ficarra, P., Tommasini, S., & Rapisarda, A. (1995). Leaf extracts of some cardia species: analgesic and antiimflamatory activities as well as their chromatographic analysis. Il Farmaco. Edizione scientifica, 50, 245–256.

    CAS  Google Scholar 

  • Giri, S., & Singh, A. K. (2014). Assessment of surface water quality using heavy metal pollution index in Subarnarekha river, India. Water Quality Exposure and Health, 5, 173–182. https://doi.org/10.1007/s12403-013-0106-2.

    Article  CAS  Google Scholar 

  • Gomes, P. I., & Asaeda, T. (2013). Phytoremediation of heavy metals by calcifying macro-algae (Nitella pseudoflabellata): implications of redox insensitive end products. Chemosphere, 92, 1328–1334. https://doi.org/10.1016/j.chemosphere.2013.05.043.

    Article  CAS  Google Scholar 

  • Górnaś, P., Siger, A., Czubinski, J., Dwiecki, K., Segliņa, D., & Nogala-Kalucka, M. (2014). An alternative RP-HPLC method for the separation and determination of tocopherol and tocotrienol homologues as butter authenticity markers: a comparative study between two European countries. European Journal of Lipid Science and Technology, 116, 895–903. https://doi.org/10.1002/ejlt.201300319.

    Article  CAS  Google Scholar 

  • Górnaś, P., Rudzińska, M., Raczyk, M., Mišina, I., Soliven, A., & Segliņa, D. (2016). Composition of bioactive compounds in kernel oils recovered from sour cherry (Prunus cerasus L.) by-products: Impact of the cultivar on potential applications. Industrial Crops and Products, 82, 44–50. https://doi.org/10.1016/j.indcrop.2015.12.010.

    Article  CAS  Google Scholar 

  • Jin-fen, P., Rong-gen, L., & Li, M. A. (2000). A review of heavy metal adsorption by marine algae. Chinese Journal of Oceanology and Limnology, 18, 260–264. https://doi.org/10.1007/BF02842673.

    Article  Google Scholar 

  • Karthick, B., Boominathan, M., Sameer, A., & Ramachandra, T. V. (2010). Evaluation of the quality of drinking water in Kerala state, India. Asian Journal of Water, Environment and Pollution, 7, 39–48.

    CAS  Google Scholar 

  • Khummongkol, D., Canterford, G. S., & Fryer, C. (1982). Accumulation of heavy metals in unicellular algae. Biotechnology and Bioengineering, 24, 2643–2660. https://doi.org/10.1002/bit.260241204.

    Article  CAS  Google Scholar 

  • Kibria, G. (2016). Trace metals/heavy metals and its impact on environment, biodiversity and human health -a short review. https://doi.org/10.13140/RG.2.1.3102.2568.

  • Kumar, A., Tak, P. C., & Sati, J. P. (2006). Residential, population and conservation status of Indian wetland birds. In G. C. Boere, C. A. Galbraith, & D. A. Stroud (Eds.), Water birds around the world (p. 308). Edinburgh: The Stationery Office.

    Google Scholar 

  • Kumar, P., Kaushal, R. K., & Nigam, A. K. (2015). Assessment and management of Ganga river water quality using multivariate statistical techniques in India. Asian Journal of Water, Environment and Pollution, 12, 61–69. https://doi.org/10.3233/AJW-150018.

    Article  CAS  Google Scholar 

  • Kurouski, D., Postiglione, T., Deckert-Gaudig, T., Deckert, V., & Lednev, I. K. (2013). Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. Analyst, 138, 1665–1673. https://doi.org/10.1039/C2AN36478F.

    Article  CAS  Google Scholar 

  • Lee, C. K., Low, K. S., & Hew, N. S. (1991). Accumulation of arsenic by aquatic plants. Science of the Total Environment, 103, 215–227. https://doi.org/10.1016/0048-9697(91)90147-7.

    Article  CAS  Google Scholar 

  • Lepš, J., & Šmilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Malschi, D., Muntean, L., Oprea, I., Roba, C., Popiţa, G., Ştefănescu, L., Malschi, F., & Rînba, E. (2018). Research on wastewaters bioremediation with aquatic species for constructed wetlands. Environmental Engineering and Management Journal, 17, 1753–1764. https://doi.org/10.30638/eemj.2018.174.

    Article  CAS  Google Scholar 

  • Meitei, M. D., & Prasad, M. N. V. (2013). Lead (II) and cadmium (II) biosorption on Spirodelapolyrhiza (L.) Schleiden biomass. Journal of Environmental Chemical Engineering, 1, 200–207. https://doi.org/10.1016/j.jece.2013.04.016.

    Article  CAS  Google Scholar 

  • Mira, L., Fernandez, M. T., Santos, M., Rocha, R., Florêncio, M. H., & Jennings, K. R. (2002). Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical Research, 36, 1199–1208. https://doi.org/10.1080/1071576021000016463.

    Article  CAS  Google Scholar 

  • Mise, S. R., & Mujawar, S. (2017). Evaluation of water quality of Kharun river stretch near the Raipur city. International Research Journal of Engineering Technology, 4, 1071–1078. https://doi.org/10.13140/rg.2.2.29028.83842.

    Article  Google Scholar 

  • Nollet, L. M. L., & De Gelder, L. S. P. (2007). Handbook of water analysis (2nd ed.). Boca Raton: CRC Press. https://doi.org/10.1201/9781420006315.

    Book  Google Scholar 

  • Olal, F. O. (2016). Biosorption of selected heavy metals using green algae, Spirogyra species. Journal of Nature and Science, 6, 22–34.

    Google Scholar 

  • Rai, U. N., & Chandra, P. (1992). Accumulation of copper, lead, manganese and iron by field populations of Hydrodictyon reticulatum (Linn.) Lagerheim. Science of the Total Environment, 116, 203–211. https://doi.org/10.1016/0048-9697(92)90449-3.

    Article  CAS  Google Scholar 

  • Reza, R., & Singh, G. (2010). Heavy metal contamination and its indexing approach for river water. International journal of Environmental Science and Technology, 7, 785–792. https://doi.org/10.1007/BF03326187.

    Article  CAS  Google Scholar 

  • Roeges, N. P. G. (1994). A guide to the complete interpretation of infrared spectral of organic structures (p. 1994). Hoboken: Wiley.

    Google Scholar 

  • Rousseau, R. M. (2001). Detection limit and estimate of uncertainty of analytical XRF results. Rigaku Journal, 18(2), 33–47.

    CAS  Google Scholar 

  • Shah, K. A., & Joshi, G. S. (2017). Evaluation of water quality index for River Sabarmati, Gujarat, India. Applied Water Science, 7, 1349–1358. https://doi.org/10.1007/s13201-015-0318-7.

    Article  CAS  Google Scholar 

  • Shanab, S., Essa, A., & Shalaby, E. (2012). Bio-removal capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signaling & Behavior, 7(3), 392–399. https://doi.org/10.4161/psb.19173.

    Article  CAS  Google Scholar 

  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1.

    Article  CAS  Google Scholar 

  • Socrates, G. (2001). Infrared and Raman characteristic group frequencies: tables and charts (3rd ed.p. 347). Chichester: Wiley.

    Google Scholar 

  • Strauss, R. (1982). Résistance des Characées aux ions Zn2+. Hydrobiologia, 87, 201–204. https://doi.org/10.1007/BF00007228.

    Article  CAS  Google Scholar 

  • Strauss, R. (1986). Sur l'accumulation de nickel et de cobalt par les Charades. Hydrobiologia, 141, 263–267. https://doi.org/10.1007/BF00014220.

    Article  CAS  Google Scholar 

  • ter Braak, C. J. F., & Smilauer, P. (2002). CANOCO reference manual and user’s guide to canoco for windows: software for canonical community ordination (version 4.5), microcomputer power (p. 500). Ithaca.

  • Towett, E. K., Shepherd, K. D., & Drake, B. L. (2016). Plant elemental composition and portable X-ray fluorescence (pXRF) spectroscopy: quantification under different analytical parameters. X-Ray Spectrometry, 45, 117–124. https://doi.org/10.1002/xrs.2678.

    Article  CAS  Google Scholar 

  • Walter-Levy, L., & Strauss, R. (1974a). Recherches sur la précipitation des carbonates Alcalino-terreux chez les characées. Hydrobiologia, 45, 217–237. https://doi.org/10.1007/BF00014003.

    Article  Google Scholar 

  • Walter-Levy, L., & Strauss, R. (1974b). Resistance des Characees aux effetstoxiques des ions Pb2+. Comptes Rendus de l'Académie des Sciences, 278, 2023–2026.

    Google Scholar 

  • Walter-Levy, L., & Strauss, R. (1975). Tolerance des Characees aux fortes concentrations du milieu en ions manganeux. Comptes Rendus de l'Académie des Sciences, 280, 1899–1902.

    CAS  Google Scholar 

  • WHO. (2011). Guidelines for Drinking-Water Quality (4th ed.). Geneva: World Health Organization http://www.who.int/water_sanitation_health/ publications/ 2011/dwq_chapters/en/.

    Google Scholar 

Download references

Acknowledgments

KSP gratefully acknowledges UGG, New Delhi, for the financial support through BSR grant no. F.18-1/2011(BSR)2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khageshwar Singh Patel.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, Y.K., Patel, K.S., Martín-Ramos, P. et al. Algal characterization and bioaccumulation of trace elements from polluted water. Environ Monit Assess 192, 38 (2020). https://doi.org/10.1007/s10661-019-8001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-8001-3

Keywords

Navigation