Skip to main content
Log in

Kinetics, thermodynamics and competitive adsorption of lead and zinc ions onto termite mound

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The elemental composition of termite mound was determined by XRF which revealed K, Ti and Mn as minor constituents while Ca and Fe as major constituents. The dominant functional groups of termite mound are Fe–OH, Fe–O and O–H. The Pb(II) and Zn(II) adsorption capacities (mg g−1) are in order of Pb(II) (13.07) > Zn(II) (12.40) > Pb(Pb/Zn) (11.72) > Zn(Pb/Zn) (7.62). The Langmuir adsorption isotherm fitted the adsorption data better than Freundlich isotherm. The adsorption process was best described by pseudo-second-order kinetic model for single and binary solutions, and the rate constants k 2 (g mg−1 min−1) are 0.036, 0.016, 0.024 and 0.015, and the calculated value of q e (mg g−1) is 12.33, 12.25, 11.52 and 7.84 for Pb(II), Zn(II), Pb(Pb/Zn) and Zn(Pb/Zn), respectively. The regression coefficient, R 2 values, for these solutions ranged between 0.9966 and 0.9978. The ΔH (kJ mol−1) values were positive for single and binary solutions in the order Pb(II) (32.0) > Pb(Pb/Zn) (30.8) > Zn(Pb/Zn) (28.0) > Zn(II) (19.0), while ΔS (kJ mol−1 K−1) are in the order of Pb(II) (0.103) > Pb(Pb/Zn) (0.097) > Zn(Pb/Zn) (0.082) > Zn(II) (0.06). The ΔG value for Zn(II) is positive in both single and binary systems, while that for Pb(II) was positive between 313–333 and 323–333 K for single and binary systems, respectively. The data show that the use of neglected termite mound for Pb(II) and Zn(II) removal from aqueous solutions is economically significant in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdus-Salam N, Adekola FA (2005a) The influence of pH and adsorbent concentration on adsorption of lead and zinc on natural goethite. AJST 6(2):55–66

    Google Scholar 

  • Abdus-Salam N, Adekola FA (2005b) Physico-chemical characterization of some Nigerian goethite mineral samples. Ife J Sci 7(1):131–137

    Article  Google Scholar 

  • Abdus-Salam N, Adekola FA (2006) Comparative dissolution of natural goethite samples in HCl and HNO3. JASEM 10(2):11–17

    Google Scholar 

  • Abdus-Salam N, Itiola AD (2012) Potential application of termite mound for adsorption and removal of Pb(II) from aqueous solutions. J Iran Chem Soc 9:373–382

    Article  CAS  Google Scholar 

  • Adekola FA, Abdus-Salam N, Abdulrauf LB (2011) Removal of arsenic from aqueous solution by synthetic hematite. J Chem Soc Niger 36(2):52–58

    CAS  Google Scholar 

  • Alhamed YA, Bamufleh HS (2009) Sulfur removal from model diesel fuel using granular activated carbon from dates’ stones activated by ZnCl2. Fuel 88:87–94

    Article  CAS  Google Scholar 

  • Appel C, Ma LQ (2002) Concentration, pH, and surface charge effects on Cd and Pb sorption in three tropical soils. J Environ Qual 31:581–589

    Article  CAS  Google Scholar 

  • Araujo BR, Reis JOM, Rezend EIP, Mangrich AS, Wisniewski A Jr, Dick DP, Romao LPC (2013) Application of termite nest for adsorption of Cr(VI). J Environ Manag 129:216–223

    Article  CAS  Google Scholar 

  • Arias F, Sen TK (2009) Removal of heavy metal ion, Zn(II) from aqueous solution by kaoline clay mineral: a kinetic and equilibrium study. Colloid Surf A 348:100–108

    Article  CAS  Google Scholar 

  • Atar N, Olgun A (2009) Removal of basic and acid dyes from aqueous solutions by a waste containing boron impurity. Desalination 249:109–115

    Article  CAS  Google Scholar 

  • Balderas-Hernandez P, Ibanez JG, Godinez-Ramirez JJ, Almada-Calvo F (2006) Microscale environmental chemistry: part 7. Estimation of the Point of Zero Charge (pzc) for simple metal oxides by a simplified potentiometric mass titration method. Chem Educ 10(10):267–270

    Google Scholar 

  • Bayramoglu G, Bektas S, Arica MY (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater 101(3):285–300

    Article  CAS  Google Scholar 

  • Bhattacharyya KG, Sen Gupta S (2006) Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: influence of acid activation of the clays. Colloids Surf A Physicochem Eng Asp 277(1–3):191–200

    Article  CAS  Google Scholar 

  • Dandamozd F, Hosseinpur AR (2010) Thermodynamic parameters of zinc sorption in some calcareous soil. J Am Sci 6(7):1–7

    Google Scholar 

  • Depci T, Kul AR, Onal Y (2012) Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van pulp: study in single- and multi- solute systems. Chem Engr J 200:224–236

    Article  Google Scholar 

  • Dube A, Zbytniewski R, Kowalkowski T, Cukrowska E, Buszewski B (2000) Adsorption and migration of Heavy metals in soil. Pol J Environ Stud 10(1):1–10

    Google Scholar 

  • Eggleton P, Bignell DE, Hauser S, Dibog L, Norgrove L, Madong B (2002) Termite diversity across an anthropogenic gradient in the humid forest zone of West Africa. Agric Ecosyst Environ 90:189–202

    Article  Google Scholar 

  • Esmaili A, Nasseri S, Mahvi AH, Atash-Dehghan R (2003) Adsorption of lead and zinc ions from aqueous solution by volcanic ash soil (VAS). In: Proceedings of the 8th international conference on environmental science technology, Lemnos Island, Greece, pp 8–10

  • Fufa F, Alemayehu E, Lennartz B (2013) Defluoridation of groundwater using termite mound. Water Air Soil Poll 224:1552–1566

    Article  Google Scholar 

  • Ghanem SA, Mikkelsen DS (1988) Sorption of zinc on iron hydrous oxide. Soil Sci 146(1):11–21

    Article  Google Scholar 

  • Halavay J, Jonas K, Elek S, Inczedy J (1977) Characterization of the particle size and crystallinity of certain minerals by infrared spectrophotometry and other instrumental methods-1. Investigation on clay minerals. Clay Miner 23:425–456

    Google Scholar 

  • Hameed BH, Din ATM, Ahmad AL (2007) Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J Hazard Mater 141:819–825

    Article  CAS  Google Scholar 

  • Hefne JA, Mekhemer WK, Alandis NM, Aldayel OA, Alajyan T (2008) Kinetic and thermodynamic study of the adsorption of Pb(II) from aqueous solution to the natural and treated bentonite. Int J Phys Sci 3(11):281–288

    Google Scholar 

  • Hesse PR (1997) A textbook of soil chemical analysis, illustrated. Chem. Pub. Co., John Murray, London, p 152

    Google Scholar 

  • Iqbal M, Edyvean RGJ (2005) Loofa sponge immobilized fungal biosorbent: a robust system for cadmium and other dissolved metal removal from aqueous solution. Chemosphere 61(4):510–518

    Article  CAS  Google Scholar 

  • James OO, Mesubi MA, Adekola FA, Odebunmi EO, Adekeye JID (2008) Beneficiation and characterization of a Bentonite from North-Eastern Nigeria. J NC Acad Sci 124(4):154–158

    CAS  Google Scholar 

  • Li T, Jiang H, Yang X, He Z (2012) Competitive sorption and desorption of cadmium and lead in paddy soil of eastern china. Environ Earth Sci. doi:10.1007/s12665-012-1853-2

  • Lu SG, Xu QF (2009) Competitive adsorption of Cd, Cu, Pb and Zn by different soils of Eastern China. Environ Geol 57:685–693

    Article  CAS  Google Scholar 

  • Manuwa S (2009) Physico-chemical and dynamic properties of termite mound soil relevant in sustainable food production. In: 9th African crop science, conference proceedings, Cape Town, South Africa, pp 365–369

  • Megat MAK, Wan Ngah WS, Zakaria H, Ibrahim SC (2007) Batch study of liquid-phase adsorption of lead ion using lalang (imperata cylinderical) leaf powder. J Biol Sci 7(2):222–230

    Article  Google Scholar 

  • Mendiguchia M, Moreno C, Vargas M (2007) Evaluation of natural and anthropogenic influences on the Guadalquivir River (Spain) by dissolved heavy metals and nutrients. Chemosphere 69(10):1509–1517

    Article  CAS  Google Scholar 

  • Mohan D, Singh KP (2002) Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res 36:2304–2318

    Article  CAS  Google Scholar 

  • Mohapatra M, Mohapatra L, Singh P, Anand S, Mashra BK (2010) A comparative on Pb(II), Cd(II), Cu(II) and Co(II) adsorption from single and binary aqueous solutions on additive assisted nano structured goethite. Int J Eng Sci Technol 2(8):81–103

    Google Scholar 

  • Nakamato K (1978) Infrared spectral of inorganic and coordination compounds, 3rd edn. Wiley, New York, p 239

    Google Scholar 

  • Naseem R, Tahir SS (2001) Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Res 35(16):3982–3986

    Article  CAS  Google Scholar 

  • Noh SJ, Schwarz JA (1989) Effect of point of zero charge of simple oxides by mass titration. J Colloid Interface Sci 130(1):157–164

    Article  CAS  Google Scholar 

  • Olgun A, Atar N (2012) Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. J Ind Eng Chem 18:1751–1757

    Article  CAS  Google Scholar 

  • Omar W, Al-Itawi H (2007) Removal of Pb+2 Ions from Aqueous Solutions by adsorption on kaolinite clay. Am J Appl Sci 4(7):502–507

    Article  CAS  Google Scholar 

  • Rouff AA, Reeder RJ, Fisher NS (2005) Electrolyte and pH effects on Pb(II)-calcite sorption processes: the role of the PbCO3(aq) complex. J Colloid Interface Sci 286(1):61–67

    Article  CAS  Google Scholar 

  • Schwertmann U, Fechter H (1982) The point of zero charge of natural and synthetic ferrihydrite and its relation to adsorbed silicate. Clay Miner 17:471–476

    Article  CAS  Google Scholar 

  • Semhi K, Chaudhuri S, Claurer N, Boeglin JL (2008) Impact of termite activity on soil environment: a perspective from their soluble chemical components. Int J Environ Sci Tech 5(4):431–444

    Article  CAS  Google Scholar 

  • Serrano S, Garrido F, Campbell CG, Garcia-Gonzalez MT (2005) Competitive sorption of cadmium and lead in acid soils of Central Spain. Geoderma 124:91–104

    Article  CAS  Google Scholar 

  • Solener M, Tunali S, Ozcan AS, Ozcan A, Gedikbey T (2008) Adsorption characteristics of lead(II) ions onto the clay poly(methoxyethyl) acrylamide composite from aqueous solutions. Desalination 223:308–322

    Article  CAS  Google Scholar 

  • Srinivasakannan C, Abu Baker MZ (2004) Production of activated carbon from rubber wood sawdust. Biomass Bioenergy 27(1):89–96

    Article  CAS  Google Scholar 

  • Stanley EM (1975) Environmental chemistry, 2nd edn. Willard Grant Press, USA, p 293

    Google Scholar 

  • Tan IAW, Ahmad AL, Hameed BH (2008) Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. J Hazard Mater 153:709–717

    Article  CAS  Google Scholar 

  • Tokalioglu S, Kartal S, Gultekin A (2006) Investigation of heavy metal uptake by vegetables growing in contaminated soil using the modified BCR sequential extraction method. Int J Environ Anal Chem 88(6):417–430

    Article  Google Scholar 

  • Torregrosa-Macia R, Martin-Martinez JM, Mittelmeijer-Hazeleger MC (1997) Porous texture of activated carbons modified with carbohydrates. Carbon 35(4):447–453

    Article  CAS  Google Scholar 

  • Veli S, Alyuz B (2007) Adsorption of copper and zinc from aqueous solutions by using natural clay. J Hazard Mater 149:226–286

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (1996) Guidelines for drinking-water quality, 2nd ed. Vol. 2. Health criteria and other supporting information. World Health Organization, Geneva

    Google Scholar 

  • Zhu J, Yang J, Deng B (2010) Ethylenediamine-modified activated carbon for aqueous lead adsorption. Environ Chem Lett 8:277–282

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. M. A. Adebayo (Chief technologist), Mr. J. Adamu and other technologists in the Department of Chemistry and Central Research Laboratories, University of Ilorin, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Abdus-Salam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdus-Salam, N., Bello, M.O. Kinetics, thermodynamics and competitive adsorption of lead and zinc ions onto termite mound. Int. J. Environ. Sci. Technol. 12, 3417–3426 (2015). https://doi.org/10.1007/s13762-015-0769-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0769-2

Keywords

Navigation