Skip to main content

Advertisement

Log in

Topographic changes measured by the swept source optical coherence tomography in retinal nerve fiber layer, optic nerve head and macula in children with migraine

  • Original article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

As a vascular-inflammatory disease, migraine affects the brain and some other organs, such as the eye. The aim of this study was to measure and compare the peripapillary retinal nerve fiber layer (RNFL) thickness, macular ganglion cell layer thickness and optic nerve head parameters to detect structural damage in children with migraine using swept-source optical coherence tomography. Twenty-four children with migraine in the painless period and 26 controls were included in the study. The vast majority of the groups consisted of females (75% for patients and 77% for controls). Certain RNFL quadrants and optic disc parameters revealed significant differences between the patients and controls. In the right and left eyes of children with migraine, nasal quadrant RNFL was significantly thicker than that in healthy subjects (88.82 ± 11.03 vs 77.80 ± 13.77, P = 0.004 for right eyes and 87.71 ± 11.79 vs 77.80 ± 13.77, P = 0.01 for left eyes). Temporal quadrant RNFL in the left eyes was thinner (78.67 ± 9.57 vs 84.44 ± 9.68, P = 0.04). Disc area in the left eyes of the patients was greater (2.29 ± 0.46 vs 1.94 ± 0.28, P = 0.003). There were significant expansions in cup volumes in favor of the patients for right and left eyes (0.15 ± .0.19 vs 0.05 ± 0.05, P = 0.03 and 0.17 ± 0.14 vs 0.05 ± 0.05, P = 0.001, respectively). The only significant difference between the left and right eyes of the migraineurs was the RNFL thickness in the superior quadrant. Ganglion cell layer thickness did not differ between the right eyes, left eyes and controls. In conclusion, children with migraine showed significant variations in specific RNFL and optic disc parameters compared to control subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Özge A, Termine C, Antonaci F et al (2011) Overview of diagnosis and management of pediatric headache. Part I: diagnosis. J Headache Pain 12:13–23

    PubMed  PubMed Central  Google Scholar 

  2. Al-Twajiri WA, Shevell MI (2002) Pediatric migraine equivalents occurrence and clinical features in practice. Pediatr Neurol 26:365–368

    Google Scholar 

  3. Abu-Arefeh I, Russell G (1994) Prevalence of headache and migraine in school children. BMJ 309:765–769

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lynberg AC, Rasmussen BK, Jorgensen T, Jensen R (2005) Incidence of primary headache: a Danish epidemiological follow-up study. Am J Epidemiol 161:1066–1073

    Google Scholar 

  5. Mavromichalis I, Anagnostopoulos D, Metaxas N, Papanastassiou E (1999) Prevalence of migraine in school children and some clinical comparisons between migraine with and without aura. Headache 39:728–736

    CAS  PubMed  Google Scholar 

  6. Battistella PA, Fiumana E, Binelli M et al (2006) Primary headaches in preschool age children: clinical study and follow-up in 163 patients. Cephalalgia 26:162–171

    CAS  PubMed  Google Scholar 

  7. Wober-Bingöl C, Wober C, Karwautz A et al (2004) Clinical features of migraine: a cross-sectional study in patients aged three to sixty-nine. Cephalalgia 24:12–17

    PubMed  Google Scholar 

  8. Antonaci F, Voiticovschi-Iosob C, Di Stefano AL et al (2014) The evolution of headache from childhood to adulthood: a review of the literature. J Headache Pain. https://doi.org/10.1186/1129-2377-15-15

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lewis DW (2009) Pediatric migraine. Neurol Clin 27:481–501

    PubMed  Google Scholar 

  10. Eidlitz-Marcus T, Gorali O, Haimi-Cohen Y, Zeharia A (2008) Symptoms of migraine in the pediatric population by age group. Cephalalgia 28:1259–1263

    Google Scholar 

  11. Petrusic I, Pavlovski V, Vucinic D, Jancic J (2014) Features of migraine aura in teenagers. J Headache Pain https://doi.org/10.1186/1129-2377-15-87

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karsan N, Prabhakar P, Goadsby PJ (2016) Characterising the premonitory stage of migraine in children: a clinic-based study of 100 patients in a specialist headache service. J Headache Pain. https://doi.org/10.1186/s10194-016-0689-7

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mamouri O, Cuvellier JC, Duhamel A et al (2017) Postdrome symptoms in pediatric migraine: A questionnaire retrospective study by phone in 100 patients. Cephalalgia. https://doi.org/10.1177/0333102417721132

    Article  PubMed  Google Scholar 

  14. Genizi J, Gordon S, Kerem NC et al (2013) Primary headaches, attention deficit disorder and learning disabilities in children and adolescents. J Headache Pain 14:4–60

    Google Scholar 

  15. D’Andrea G, Nertempi P, Ferro Milone F et al (1989) Personality and memory in childhood migraine. Cephalalgia 9:25–28

    PubMed  Google Scholar 

  16. Waldie KE, Hausmann M, Milne BJ, Poulton R (2002) Migraine and cognitive function: a life-course study. Neurology 59:904–908

    PubMed  Google Scholar 

  17. Parisi P, Verrotti A, Paolino MC et al (2010) Headache and cognitive profile in children: a cross-sectional controlled study. J Headache Pain 11:45–51

    PubMed  Google Scholar 

  18. Haverkamp F, Hornscheid A, Muller-Sinik K (2002) Cognitive development in children with migraine and their unaffected siblings. Headache 42:776–779

    CAS  PubMed  Google Scholar 

  19. Fercher AF (2010) Optical coherence tomography-development, principles, applications. Z Med Phys 20:251–276

    PubMed  Google Scholar 

  20. Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:178–181

    Google Scholar 

  21. Headache Classification Committee of the International Headache Society (IHS) (2013) The international classification of headache disorders: 3rd edition (beta version). Cephalalgia 33:629–808

    Google Scholar 

  22. Goadsby PJ, Charbit AP, Andreou S et al (2009) Neurobiology of migraine. Neuroscience 161:327–341

    CAS  PubMed  Google Scholar 

  23. Ayata C (2010) Cortical spreading depression triggers migraine attack pro. Headache 50:725–730

    PubMed  Google Scholar 

  24. Silberstein SD (2004) Migraine pathophysiology and its clinical implications. Cephalalgia 24:2–7

    PubMed  Google Scholar 

  25. Martinez A, Proupim N, Sanchez M (2008) Retinal nerve fiber layer thickness measuremets using optical coherence tomography in migraine patients. Br J Ophthalmol 92:1069–1075

    CAS  PubMed  Google Scholar 

  26. Gipponi S, Scaroni N, Venturelli E et al (2013) Reduction in retinal nerve fiber layer thickness in migraine patients. Neurol Sci 34:841–845

    PubMed  Google Scholar 

  27. Yülek E, Dirik EB, Eren Y et al (2015) Macula and retinal nerve fiber layer in migraine patients: analysis by spectral domain optic coherence tomography. Semin Ophthalmol 30:124–128

    PubMed  Google Scholar 

  28. Reggio E, Chisari CG, Ferrigno G et al (2017) Migraine causes retinal and choroidal structural changes: evaluation with ocular coherence tomography. J Neurol 26:494–502

    Google Scholar 

  29. Monterio MI, Fernandes DB, Apostolos-Pereira SL, Callegaro D (2012) Quantification of retinal neural loss in patients with neuromyelitis optica and multiple sclerosis with or without optic neuritis using Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:3959–3966

    Google Scholar 

  30. Kırbaş S, Türkyılmaz K, Anlar O et al (2013) Retinal nerve fiber layer thickness in Alzheimer disease. J Neuroophthalmol 33:58–61

    PubMed  Google Scholar 

  31. Yener A, Korucu O (2018) Quantitative analysis of retinal nerve fiber layer, ganglion cell layer and optic disc parameters in patients with migraine and patients with tension type headache by swept source optical coherence tomography. Acta Neurol Belg. https://doi.org/10.1007/s13760-018-1041-6

    Article  PubMed  Google Scholar 

  32. Tan FU, Akarsu C, Güllü R (2005) Retinal nerve fiber layer thickness is unaffected in migraine patients. Acta Neurol Scand 112:19–23

    CAS  PubMed  Google Scholar 

  33. Ekinci M, Ceylan E, Çağatay HH et al (2014) Retinal nerve fiber layer, ganglion cell layer and choroid thinning in migraine with aura. BMC Ophthalmol. https://doi.org/10.1186/1471-2415-14-75

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ascaso FJ, Marco S, Mateo J et al (2017) Optical coherence tomography in patients with chronic migraine: Literature review and update. Front Neurol. https://doi.org/10.3389/fneur.2017.00684

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang Z, Tatham AJ, Zangwill LM et al (2015) Diagnostic ability of retinal nerve fiber layer imaging by swept source optical coherence tomography in glaucoma. Am J Ophthalmol 159:193–201

    PubMed  Google Scholar 

  36. Sung KR, Wollstein G, Kim NR et al (2012) Macular assessment using optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol 96:1452–1455

    PubMed  PubMed Central  Google Scholar 

  37. McKendrick AM, Vingrys AJ, Badcock DR, Heywood JT (2000) Visual field losses in subjects with migraine headache. Invest Ophthalmol Vis Sci 41:1239–1247

    CAS  PubMed  Google Scholar 

  38. Drance S, Anderson DR, Schulzer M (2001) Collaborative Normal-Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol 131:699–708

    CAS  PubMed  Google Scholar 

  39. Phelps CD, Corbett JJ (1985) Migraine and low tension glaucoma. A case control study. Invest Ophthalmol Vis Sci 26:1105–1108

    CAS  PubMed  Google Scholar 

  40. Flammer J, Pache M, Resink T (2001) Vasospasm, its role in the pathogenesis of diseases with articular reference to the eye. Prog Retin Eye Res 20:319–349

    CAS  PubMed  Google Scholar 

  41. Koban Y, Özlece HK, Bilgin G et al (2016) Intraocular pressure and ocular biometric parameters changes in migraine. BMC Ophthalmol. https://doi.org/10.1186/s12886-016-0258-5

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kara SA, Erdemoğlu AK, Karadeniz MY, Altınok D (2003) Color doppler sonography of orbital and vertebral arteries in migraineurs without aura. J Clin Ultrasound 31:308–314

    PubMed  Google Scholar 

  43. Schwedt TI, Chiang CC, Chong CD, Dodick DW (2015) Functional MRI of migraine. Lancet Neurol 14:81–91

    PubMed  Google Scholar 

  44. Killer HE, Forrer A, Flammer J (2003) Retinal vasospasm during an attack of migraine. Retina 23:253–254

    PubMed  Google Scholar 

  45. Güneş A, Demirci S, Tok L et al (2016) Is retinal nerve fiber layer thickness change related to headache lateralization in migraine? Korean J Ophthalmol 30:134–139

    PubMed  PubMed Central  Google Scholar 

  46. Feng YF, Guo H, Huang JH et al (2016) Retinal nerve fiber layer thickness changes in migraine: a meta-analysis of case-control studies. Curr Eye Res 41:814–822

    CAS  PubMed  Google Scholar 

  47. Stewart WF, Lipton RB, Dowson AJ, Sawyer J (2001) Development and testing of the migraine disability assessment (MIDAS) questionnaire to assess headache related disability. Neurology 56:520–528

    Google Scholar 

  48. Zengin MO, Elmas Z, Çınar E, Küçükerdönmez C (2015) Choroidal thickness changes in patients with migraine. Acta Neurol Belg 115:33–37

    PubMed  Google Scholar 

  49. Karaca EE, Koçer EB, Özdek Ş et al (2016) Choroidal thickness measurements in migraine patients during attack-free period. Neurol Sci 37:81–88

    PubMed  Google Scholar 

  50. Dadacı Z, Doğanay F, Öncel Acır N (2014) Enhanced depth imaging optical coherence tomography of the choroid in migraine patients: implications for the association of migraine and glaucoma. Br J Ophthalmol 98:972–975

    PubMed  Google Scholar 

  51. Karalezli A, Şimşek C, Çelik G, Eroğlu FC (2014) Evaluation of choroidal thickness using spectral- domain optical coherence tomography in migraine patients during acute migraine attacks: a comparative study. Eye (Lond) 28:1477–1481

    CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors. The authors thank Vedat Selamoğlu for providing help in the construction of the figures in the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Ülkü Yener.

Ethics declarations

Conflict of interest

Both authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in the study involving human participants were in accordance with the ethical standards of the Institutional Research Committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yener, A.Ü., Yılmaz, D. Topographic changes measured by the swept source optical coherence tomography in retinal nerve fiber layer, optic nerve head and macula in children with migraine. Acta Neurol Belg 120, 661–668 (2020). https://doi.org/10.1007/s13760-019-01123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-019-01123-5

Keywords

Navigation