Skip to main content
Log in

Intraguild Predation in Heteroptera: Effects of Density and Predator Identity on Dipteran Prey

  • Biological Control
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

In tropical freshwaters, different species of water bugs (Heteroptera) constitute a guild sharing similar prey resources including chironomid and mosquito larvae. Assuming possibilities of intraguild predation (IGP) among the constituent members, an attempt was made to evaluate the effects of prey and predator density on the mortality of mosquito and chironomid larvae (shared prey), using Laccotrephes griseus Guérin-Méneville (Hemiptera: Nepidae) and Ranatra filiformis Fabricius (Hemiptera: Nepidae) as IG predators and Anisops bouvieri Kirkaldy (Hemiptera: Notonectidae) as IG prey. The predation on mosquito and chironomid larvae varied with the density and combinations of the predators. When present as conspecific IG predators, L. griseus exhibited greater effect on the prey mortality than R. filiformis. The effects on shared prey suggest that the two predators are not substitutable in terms of the effect on the shared prey mortality. The mortality of A. bouvieri (IG prey) at low shared prey density was significantly different (p < 0.05) from high shared prey density. In view of predatory effect of the heteropteran predators on the dipteran larvae, the results suggest possible interference by the presence of A. bouvieri as an intermediate predator. It seems that the presence of heteropteran predators including A. bouvieri as IG prey may benefit the dipteran prey under situations when the density is low in tropical waters. The intensity of the predatory effect may differ based on the species composition at IG predator level. For mosquito biological control, the interactions between the predators may not be substitutable and are independent in their effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

References

  • Addinsoft SARL (2010) XLSTAT software, version 9.0. Addinsoft, Paris

    Google Scholar 

  • Aditya G, Bhattacharya S, Kundu N, Saha GK, Raut SK (2004) Predatory efficiency of the water bug Sphaerodema annulatum on mosquito larvae (Culex quinquefasciatus) and its effect on adult emergence. Bioresour Technol 95:169–172

    Article  CAS  PubMed  Google Scholar 

  • Aditya G, Bhattacharya S, Kundu N, Saha GK (2005) Frequency dependent prey selection of predacious water-bugs on Armigeres subalbatus immatures. J Vector Borne Dis 42:9–14

    CAS  PubMed  Google Scholar 

  • Ambrose T (1985) Assimilation efficiency of biocontrol agents (Gambusia affinis, Laccotrephes griseus and Gerris (A) spinolae) on larval mosquitoes. Environ Ecol 14(2):471–472

    Google Scholar 

  • Arim M, Marquet PA (2004) Intraguild predation: a widespread interaction related to species biology. Ecol Lett 7:557–564

    Article  Google Scholar 

  • Bailey PCE (1985) ‘A prey in the hand’, multi- prey capture behaviour in a sit-and-wait predator, Ranatra dispar (Heteroptera:Nepidae), the water stick insect. J Ethol 3:105–112

    Article  Google Scholar 

  • Bailey PCE (1986) The feeding behavior of a sit- and wait- predator Ranatra dispar (Heteroptera:Nepidae):optimal foraging and feeding dynamics. Oecologia 68:291–297

    Article  Google Scholar 

  • Bailey PCE (1987) Abundance and age-specific spatial and temporal distribution in two water- bug species, (Heteroptera:Notonectidae) and Ranatra dispar (Heteroptera:Nepidae) in farm dams in South Australia. Oikos 49:83–90

    Article  Google Scholar 

  • Bambaradeniya CNB, Edirisinghe JP, Silva DN, Gunatilleke CVS, Ranawana KB, Wijekoon S (2004) Biodiversity associated with rice agro-ecosystem in Sri Lanka. Biodivers Conserv 13:1715–1753

    Article  Google Scholar 

  • Banerjee S, Aditya G, Saha N, Saha GK (2010) An assessment of macroinvertebrate assemblages in mosquito larval habitats—space and diversity relationship. Environ Monit Assess 168:597–611

    Article  PubMed  Google Scholar 

  • Bence JR (1988) Indirect effects and biological control of mosquitoes by mosquitofish. J Appl Ecol 25:505–521

    Article  Google Scholar 

  • Blois C, Cloarec A (1983) Density-dependent prey selection in the water stick insect, Ranatra linearis (Heteroptera). J Anim Ecol 52:849–866

    Article  Google Scholar 

  • Brahma S, Aditya G, Sharma D, Saha N, Kundu M, Saha GK (2014) Influence of density on intraguild predation of aquatic Hemiptera (Heteroptera): implications in biological control of mosquito. J Entomol Acarol Res 46:1977

    Article  Google Scholar 

  • Chacón JM, Heimpel GE (2010) Density-dependent intraguild predation of an aphid parasitoid. Oecologia 164:213–220

    Article  PubMed  Google Scholar 

  • Cottrell TE, Yeargan KV (1998) Intraguild predation between an introduced Lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae), and a native Lady beetle, Coleomegilla maculata (Coleoptera: Coccinellidae). J Kansas Entomol Soc 7(2):159–163

    Google Scholar 

  • Crumrine PW (2005) Size structure and substitutability in an odonate intraguild predation system. Oecologia 145:132–139

    Article  PubMed  Google Scholar 

  • Crumrine PW (2010) Size-structured cannibalism between top predators promotes the survival of intermediate predators in an intraguild predation system. J N Am Benthol Soc 29(2):636–646

    Article  Google Scholar 

  • Crumrine PW, Crowley PH (2003) Partitioning components of risk reduction in a dragonfly-fish intraguild predation system. Ecology 84:1588–1597

    Article  Google Scholar 

  • Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410

    Article  CAS  PubMed  Google Scholar 

  • Flynn KE, Moon DC (2011) Effects of habitat complexity, prey type, and abundance on intraguild predation between larval odonates. Hydrobiologia 675:97–104

    Article  Google Scholar 

  • Gagnon A-É, Heimpel GE, Brodeur J (2011) The ubiquity of intraguild predation among predatory arthropods. PLoS One 6(11):e28061. doi:10.1371/journal. pone.0028061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griffen BD, Byers JE (2006a) Partitioning mechanisms of predator interference in different habitats. Oecologia 146:608–614

    Article  PubMed  Google Scholar 

  • Griffen BD, Byers JE (2006b) Intraguild predation reduces redundancy of predator species in multiple predator assemblage. J Anim Ecol 75:959–966

    Article  PubMed  Google Scholar 

  • Griffen BD, Williamson T (2008) Influence of predator density on non-independent effects of multiple predator species. Oecologia 155:151–159

    Article  PubMed  Google Scholar 

  • Griswold MW, Lounibos LP (2006) Predator identity and additive effects in a treehole community. Ecology 84:987–995

    Article  Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12:197–229

    Article  CAS  PubMed  Google Scholar 

  • Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. Am Nat 149(4):745–764

    Article  Google Scholar 

  • Huang C, Sih A (1991) Experimental studies of direct and indirect interactions in a three trophic level stream system. Oecologia 85:530–536

    Article  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54:187–211

    Article  Google Scholar 

  • Ives AR, Cardinale BJ, Snyder WE (2005) A synthesis of subdisciplines: predator–prey interactions, and biodiversity and ecosystem functioning. Ecol Lett 8:102–116

    Article  Google Scholar 

  • Jayakumar E, Mathavan S (1985) Successful colonization of Laccotrephes griseus (Hemiptera: Nepidae). Curr Sci 54(5):342–344

    Google Scholar 

  • Jayakumar E, Mathavan S (1991) Effects of temperature on the growth and bioenergetics of Laccotrephes griseus (Hemiptera: Nepidae). J Therm Biol 16(2):93–102

    Article  Google Scholar 

  • Johansson F (1993) Intraguild predation and cannibalism in Odonate larvae: effects of foraging behavior and zooplankton availability. Oikos 66:80–87

    Article  Google Scholar 

  • Kannappan P, Nishi R, Rao TKR (1990) Predatory efficiency of Laccotrephes griseus. Environ Ecol 8(4):1101–1104

    Google Scholar 

  • Koss AM, Snyder WE (2005) Alternative prey disrupts biocontrol by a guild of generalist predators. Biol Control 32:243–251

    Article  Google Scholar 

  • Lucus E, Coderre D, Brodeur J (1998) Intraguild predation among aphid predators: characterization and influence of extraguild prey density. Ecology 79(3):1084–1092

    Article  Google Scholar 

  • Lupi D, Locco A, Rosarro B (2013) Benthic macroinvertebrates in Italian rice fields. J Limnol 72(1):184–200

    Article  Google Scholar 

  • Manna B, Aditya G, Banerjee S (2008) Vulnerability of the mosquito larvae to the guppies (Poecilia reticulata) in the presence of alternative prey. J Vector Borne Dis 45:200–206

    PubMed  Google Scholar 

  • Manna B, Aditya G, Banerjee S (2011) Habitat heterogeneity and prey selection of Aplocheilus panchax: an indigenous larvivorous fish. J Vector Borne Dis 48:144–149

    PubMed  Google Scholar 

  • McCoy MW, Stier AC, Osenberg CW (2012) Emergent effects of multiple predators on prey survival: the importance of depletion and the functional response. Ecol Lett 15:1449–1456

    Article  PubMed  Google Scholar 

  • Mogi M (2007) Insects and other invertebrate predators. J Am Mosq Control Assoc 23:93–109

    Article  PubMed  Google Scholar 

  • Morin PJ (1995) Functional redundancy, non-additive interactions, and supply-side dynamics in experimental pond communities. Ecology 76:133–149

    Article  Google Scholar 

  • Muller CB, Brodeur J (2002) Intraguild predation in biological control and conservation biology. Biol Control 25:216–223

    Article  Google Scholar 

  • Nandi S, Aditya G, Saha GK (2012) Nutrient condition and chironomid assemblages in Kolkata, India: assessment for biomonitoring and ecological management. J Limnol 71(2):320–329

    Article  Google Scholar 

  • Neetha V, Venkatesan P (2005) Multispecies effects in the predatory performance of water bugs exposed to Culex larvae. J Entomol Res 29(2):99–103

    Google Scholar 

  • Ohba S, Swart CC (2009) Intraguild predation of water scorpion Laccotrephes japonensis (Nepidae: Heteroptera). Ecol Res 24:1207–1211

    Article  Google Scholar 

  • Otto SB, Berlow EL, Rank NE, Smiley J, Brose U (2008) Predator diversity and identity drive interaction strength and trophic cascades in a food web. Ecology 89(1):134–144

    Article  PubMed  Google Scholar 

  • Peckarsky BL (1991) Habitat selection by stream-dwelling predatory stoneflies. Can J Fish Aquat Sci 48:1069–1976

    Article  Google Scholar 

  • Pinder LCV (1995) The habitats of chironomid larvae. In: Armitage PD, Cranston PS, Pinder LCV (eds) The chironomidae: biology and ecology of non- biting midges. Chapman & Hall, London, pp 107–135

    Chapter  Google Scholar 

  • Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330

    Article  Google Scholar 

  • Quiroz-Martinez H, Rodriguez-Castro A (2007) Aquatic insects as predators of mosquito larvae. J Am Mosq Control Assoc 23(2):110–117

    Article  PubMed  Google Scholar 

  • Rosenheim JA, Wilhoit LR, Armer CA (1993) Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. Oecologia 96:439–449

  • Rosemheim JA, Kaya H, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological-control agents: theory and evidence. Biol Control 5:303–335

    Article  Google Scholar 

  • Saha N, Aditya G, Bal A, Saha GK (2007a) A comparative study of predation of three aquatic hemipteran bugs on Culex quinquefasciatus larvae. Limnology 8:73–80

    Article  Google Scholar 

  • Saha N, Aditya G, Bal A, Saha GK (2007b) Comparative study of functional response of common Hemipteran bugs of East Calcutta wetlands, India. Int Rev Hydrobiol 92:242–257

    Article  Google Scholar 

  • Saha N, Aditya G, Saha GK (2009) Habitat complexity reduces vulnerability of prey: an experimental analysis using aquatic insect predators and dipteran immatures. J Asia Pac Entomol 12:233–239

    Article  Google Scholar 

  • Saha N, Aditya G, Saha GK, Hampton SE (2010) Opportunistic foraging by heteropteran mosquito predators. Aquat Ecol 44:167–176

    Article  CAS  Google Scholar 

  • Schmitz OJ (2007) Predator diversity and trophic interactions. Ecology 88(10):2415–2426

    Article  PubMed  Google Scholar 

  • Schmitz OJ, Sokol-Hessner L (2002) Linearity inthe aggregate effects of multiple predators in a food web. Ecol Lett 5:168–172

    Article  Google Scholar 

  • Sih A (1981) Stability, prey density and age-dependent interference in an aquatic insectpredator, Notonecta hoffmanni. J Anim Ecol 50:625–636

    Article  Google Scholar 

  • Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:350–355

    Article  CAS  PubMed  Google Scholar 

  • Snyder WE, Clevenger GM, Eigerbrode SD (2004) Indraguild predation and successful invasion by introduced ladybird beetles. Oecologia 140:559–565

    Article  PubMed  Google Scholar 

  • Soluk DA (1993) Multiple predator effects: predicting combined functional response of stream fish and invertebrate predators. Ecology 74:219–225

  • Soluk DA, Collins NC (1988) Synergistic interactions between fish and stoneflies-facilitation and interference among stream predators. Oikos 52:94–100

    Article  Google Scholar 

  • Stav G, Blaustein L, Margalit Y (2005) Individual and interactive effects of a predator and controphic species on mosquito populations. Ecol Appl 15:587–598

    Article  Google Scholar 

  • Wissinger S, Mcgrady J (1993) Intraguild predation and competition between larval dragonflies: direct and indirect effects on shared prey. Ecology 74:207–218

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, IVth edn. Pearson Education (Singapore) Pte. Ltd, New Delhi

    Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the suggestions of the anonymous reviewers that enhanced the manuscript to its present form. We thank Prof. Fernando Luis Consoli for his kind and constructive suggestions in reframing the manuscript. The authors are grateful to the respective Heads, Department of Zoology, University of Calcutta, Kolkata, India, and The University of Burdwan, Burdwan, India, for the facilities provided including DST-FISTand UGC-SAP (DRS I &II). GA acknowledges the financial assitance of UGC through Research Award [Sanction No F.30-90(SA-II)/2009;17.09.2009], in carryng out the work. SB acknowledges the financial assistance of UGC-RFSMS in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Aditya.

Additional information

Edited by Fernando L Cônsoli – ESALQ/USP

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brahma, S., Sharma, D., Kundu, M. et al. Intraguild Predation in Heteroptera: Effects of Density and Predator Identity on Dipteran Prey. Neotrop Entomol 44, 374–384 (2015). https://doi.org/10.1007/s13744-015-0286-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-015-0286-5

Keywords

Navigation