Skip to main content

Advertisement

Log in

An assessment of macroinvertebrate assemblages in mosquito larval habitats—space and diversity relationship

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aquatic bodies designated as mosquito larval habitats are diverse in size and species composition. The macroinvertebrate predators in these habitats are elements that influence the abundance of mosquito species, providing a basis for biological control. Assessment of species assemblage in these habitats will indicate the possible variations in the resource exploitation and trophic interactions and, therefore, can help to frame biological control strategies more appropriately. In the present study, the species composition is being investigated in five different mosquito larval habitats at a spatial scale. A random sample of 80 each of the habitats, grouped as either small or large, was analyzed in respect to the macroinvertebrate species assemblage. The species composition in the habitats was noted to be an increasing function of habitat size (species number = 1.653 + 0.819 habitat size) and, thus, the diversity. The relative abundance of the mosquito immatures varied with the habitat, and the number of useful predator taxa was higher in the larger habitats. In the smaller habitats—plastic and earthen structures and sewage drains, the relative and absolute number of mosquito immatures per sampling unit were significantly higher than the pond and rice field habitats. This was evident in the cluster analysis where the smaller habitats were more related than the larger habitats. The principal component analysis on the species diversity yielded four and six components, respectively, for the smaller and larger habitats for explaining the observed variance of species abundance. The species composition in the habitats was consistent with the earlier findings and support that the abundance of coexisting macroinvertebrate species regulates the relative load of mosquito immatures in the habitats. The findings of this study may be further tested to deduce the relative importance of the habitats in terms of the productivity of mosquito immatures at a temporal scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addinsoft, S. A. R. L. (2009). XLSTAT software, version 9.0. Paris, France.

    Google Scholar 

  • Aditya, G., Pramanik, M. K., & Saha, G. K. (2006). Larval habitats and species composition of mosquitoes in Darjeeling Himalayas. Journal of Vector Borne Diseases, 43, 7–15.

    Google Scholar 

  • Aditya, G., Tamang, R., Sharma, D., Subba, F., & Saha, G. K. (2008). Bamboo stumps as mosquito larval habitats in Darjeeling Himalayas, India – a spatial scale analysis. Insect Science, 15, 245–249. doi:10.1111/j.1744–7917.2008.00207.

    Article  Google Scholar 

  • Alto, B. W., Griswold, M. W., & Lounibos, L. P. (2005). Habitat complexity and sex dependent predation of mosquito larvae in containers. Oecologia, 146, 300–310. doi:10.1007/s00442–005–0198-x.

    Article  Google Scholar 

  • Balcombe, C. K., Anderson, J. T., Fortney, R. H., & Kordek, W. S. (2005). Aquatic macroinvertebrate assemblages in mitigated and natural wetlands. Hydrobiologia, 541, 175–188. doi:10.1007/s10750–004–5706–1.

    Article  Google Scholar 

  • Bambaradeniya, C. N. B., Edirisinghe, J. P., De Silva, D. N., Gunatilleke, C. V. S., Ranawana, K. B., & Wijekoon, S. (2004). Biodiversity associated with an irrigated rice agro-ecosystem in Sri Lanka. Biodiversity and Conservation, 13, 1715–1753. doi:10.1023/B:BIOC0000029331.92656.de.

    Article  Google Scholar 

  • Barraud, P. J. (1934). Fauna of British India, including Ceylon and Burma. Diptera (Family culicidae: Tribes megarginini and culicini) (Vol V). London, UK: Taylor and Francis.

    Google Scholar 

  • Blaustein, L., & Chase, J. M. (2007). Interactions between mosquito larvae and species that share the same trophic level. Annual Review of Entomology, 52, 489–507. doi:10.1146/annurev.ento.52.110405.091431.

    Article  CAS  Google Scholar 

  • Blaustein, L., Kiflawi, M., Eitam, A., Mangel, M., & Cohen, J. E. (2004). Oviposition habitat selection in response to risk of predation in temporary pools: Mode of detection and consistency along experimental venue. Oecologia, 138, 300–305. doi:10.1007/s00442–003–1398.

    Article  Google Scholar 

  • Burdett, A. S., & Watts, R. J. (2009). Modifying living space: An experimental study of the influences of vegetation on aquatic invertebrate community structure. Hydrobiologia, 618, 161–173. doi:10.1007/s10750–008–9573-z.

    Article  Google Scholar 

  • Campos, R. E., Fernandez, I. A., & Sy, V. E. (2004). Study of the insects associated with the floodwater mosquito Ochlerotahus albifasciatus (Diptera Culicidae) and their possible predators in Buenos Aires province. Hydrobiologia, 524, 9–10. doi:10.1023/B:HYDR0000036122.10578.d0.

    Article  Google Scholar 

  • Carlson, J., Keating, J., Mbogo, C. M., Kahindi, S., & Beier, J. C. (2004). Ecological limitations on the aquatic mosquito predator colonization in the urban environment. Journal of Vector Ecology, 29, 331–339.

    Google Scholar 

  • Christophers, S. R. (1933). The fauna of British India including Ceylon and Burma (Vol IV). London, UK: Taylor and Francis.

    Google Scholar 

  • Das, P. K., Sivagnaname, N., & Amalraj, D. D. (2006). Population interactions between Culex vishnui mosquitoes and their natural enemies in Pondicherry, India. Journal of Vector Ecology, 29, 188–191.

    Google Scholar 

  • De Szalay, F. A., & Resh, V. H. (2000). Factors influencing macroinvertebrate colonization of seasonal wetlands: Responses to emergent plant cover. Freshwater Biology, 45, 295–308. doi:10.1111/j.1365–2427.2000.00623.x.

    Article  Google Scholar 

  • Eitam, A., & Blaustein, L. (2004). Oviposition habitat selection by mosquitoes in response to predator (Notonecta maculata) density. Physiological Entomology, 29, 188–191. doi:10.1111/j.0307–6962.2004.0372.x.

    Article  Google Scholar 

  • Fincke, O. M. (1999). Organization of predator assemblages in Neotropical tree holes: Effects of abiotic factors and priority. Ecological Entomology, 24, 13–23. doi:10.1046/j.1365–2311.1999.00166.x.

    Article  Google Scholar 

  • Fischer, S., Marinone, M. C., Fontanarrosa, M. S., Nieves, M., & Schweigmann, N. (2000). Urban rain pools: Seasonal dynamics and entomofauna in a park of Buenos Aires. Hydrobiologia, 444, 45–63. doi:10.1007/BF00028052.

    Article  Google Scholar 

  • Garcia, R. (1983). Mosquito management: Ecological approaches. Environmental Management, 7, 73–78. doi:10.1007/BF01867044.

    Article  Google Scholar 

  • Gilbert, B., Srivastava, D. S., & Kirby, K. R. (2008). Niche partitioning at multiple scales facilitates coexistence among mosquito larvae. Oikos, 117(6), 944–950. doi:10.1111/j.0030–1299.2008.16300.x.

    Article  Google Scholar 

  • Irwin, P., Arcari, C., Hausbeck, J., & Paskewitz, S. (2008). Urban wet environment as mosquito habitat in upper Midwest. EcoHealth, 5, 49–57. doi:10.1007/s10393–007–0152-y.

    Article  Google Scholar 

  • Jacob, B. G., Muturi, E. J., Funes, J. E., Shililu, J. I., Githure, J. I., Kakoma, I. I., et al. (2006a). A grid-based infrastructure for ecological forecasting of Riceland Anopheles arabiensis aquatic larval habitats. Malaria Journal, 5, 91. doi:10.1186/1475–2875–5–91.

    Article  Google Scholar 

  • Jacob, B. G., Shililu, J., Muturi, E. J., Mwangangi, J. M., Muriu, S. M., Funes, J., et al. (2006b). Spatially targeting Culex quinquefasciatus aquatic habitats on modified land cover for implementing an Integrated Vector Management (IVM) program in three villages within the Mwea Rice Scheme, Kenya. International Journal of Health Geographics, 5, 18. doi:10.1186/1476–072X-5–18.

    Article  Google Scholar 

  • Jeffries, M. J. (2002). Evidence for individualistic species assembly creating convergent predator-prey ratios among pond invertebrate communities. Journal of Animal Ecology, 71, 173–184. doi:10.1046/j.1365–2656.2002.00587.x.

    Article  Google Scholar 

  • Keating, J., Macintyre, K., Mbogo, C. M., Githure, J. I., & Beier, J. C. (2004). Characterization of potential larval habitats for Anopheles mosquitoes in relation to urban land-use in Malindi, Kenya. International Journal of Health Geographics, 3, 9. doi:0.1186/0.1186/1476–072X-3–9.

    Article  Google Scholar 

  • Kiflawi, M., Blaustein, L., & Mangel, M. (2003). Predation-dependent oviposition habitat selection by the mosquito Culiseta longiareolata: A test of competing hypotheses. Ecology Letters, 6, 35–40. doi:10.1046/j.1461–0248.2003.00385.x.

    Article  Google Scholar 

  • Kinnear, P. R., & Gray, C. D. (2000). SPSS for Windows made simple. Release 10. Sussex, UK: Psychology Press.

    Google Scholar 

  • Kitching, R. L. (2001). Foodwebs in phytotelmata: “Bottom-up” and “top-down” explanations for community structure. Annual Review of Entomology, 46, 729–60. doi:10.1146/annurev.ento.46.1.729.

    Article  CAS  Google Scholar 

  • Knight, R. L., Walton, W. E., O’Meara, G. F., Reisen, W. K., & Wass, R. (2003). Strategies for effective mosquito control in constructed treatment wetlands. Ecological Engineering, 21, 211–232. doi:10.1016/j.ecoleng.2003.11.001.

    Article  Google Scholar 

  • Krebs, C. J. (1999). Ecological methodology (2nd ed.). New York, USA: Benjamin Cummings.

    Google Scholar 

  • Leitão, S., Pinto, P., Pereira, T., & Brito, M. F. (2007). Spatial and temporal variability of macroinvertebrate communities in two farmed Mediterranean rice fields. Aquatic Ecology, 41, 373–386. doi:10.1007/s10452–007–9082–6.

    Article  Google Scholar 

  • Ludwig, J. A., & Reynolds, J. F. (1988). Statistical ecology: A primer on methods and computing. NewYork, USA: John Wiley & Sons.

    Google Scholar 

  • McDonald, G., & Buchanan, G. A. (1981). The mosquito and predatory insect fauna inhabiting fresh-water ponds, with particular reference to Culex annulirostris Skuse (Diptera: Culicidae). Australian Journal of Ecology, 6, 21–27. doi:10.1111/j.1442–9993.1981.tb01270.x.

    Article  Google Scholar 

  • Mogi, M., Memah, V., Miyagi, I., Toma, T., & Sembel, D. T. (1995). Mosquito and aquatic predator abundance in irrigated and rain fed rice fields in north Sulawesi, Indonesia. Journal of Medical Entomology, 32, 361–367.

    CAS  Google Scholar 

  • Mogi, M., Sunahara, T., & Selemo, M. (1999). Mosquito and aquatic predator communities in ground pools on lands deforested for rice-field development in central Sulawesi, Indonesia. Journal of the American Mosquito Control Association, 15, 92–97.

    CAS  Google Scholar 

  • Naeem, S. (1988). Predator-prey interactions and community structure: Chironomids, mosquitoes and copepods in Heliconia imbricata (Musaceae). Oecologia, 77, 202–209. doi:10.1007/BF00379187.

    Article  Google Scholar 

  • Nagpal, B. N., Srivastava, A., Saxena, R., Ansari, M. A., Dash, A. P., & Das, S. C. (2005). Pictorial identification key for Indian anophelines. New Delhi, India: Malaria Research Centre, (ICMR).

    Google Scholar 

  • Overtli, B., Joye, D. A., Castella, E., Juge, R., Cambin, D., & Lachavanne, J.-B. (2002). Does size matter? The relationship between pond area and biodiversity. Biological Conservation, 104, 59–70. doi:10.1016/S0006–3207(01)00154–9.

    Article  Google Scholar 

  • Pramanik, M. K., & Raut, S. K. (2003). Occurrence of the giant mosquito Toxorhynchites splendens in drains and its predation potential on some vector mosquitoes of Kolkata (Calcutta), India. Medical Entomology and Zoology, 54, 315–323.

    Google Scholar 

  • Pramanik, M. K., Aditya, G., & Raut, S. K. (2007). Seasonal prevalence of Aedes aegypti immatures in Kolkata, India. Southeast Asian Journal Tropical Medicine and Public Health, 38, 442–447.

    Google Scholar 

  • Robert, V., Goff, G., Ariey, F., & Duchemin, J. B. (2002). A possible alternative method for collecting mosquito larvae in rice fields. Malaria Journal, 1, 4. doi:10.1186/1475–2875–1–4.

    Article  Google Scholar 

  • Saha, N., Aditya, G., Bal, A., & Saha, G. K. (2008). Light and habitat structure influences predation of Culex quinquefasciatus larvae by the water bugs (Hemiptera: Heteroptera). Insect Science, 15, 461–469. doi:10.1111/j.1744–7917.2008.00234.x.

    Article  Google Scholar 

  • Saha, N., Aditya, G., & Saha, G. K. (2009). Habitat complexity reduces vulnerability of prey: An experimental analysis using aquatic insect predators and dipteran immatures. Journal of Asia Pacific Entomology. doi:10.1016/j.aspen.2009.06.00.

    Google Scholar 

  • Spencer, M., Blaustein, L., & Cohen, J. E. (2002). Oviposition habitat selection by mosquitoes (Culiseta longiareolata) and consequences for population size. Ecology, 83, 669–679. doi:10.1890/0012–9658(2002)083[0669:OHSBMC]2.0.CO;2.

    Article  Google Scholar 

  • Srivastava, D. (2006). Habitat structure, trophic structure and ecosystem function: Interactive effects in a bromeliad–insect community. Oecologia, 149, 493–504. doi:10.1007/s00442–006–0467–3.

    Article  Google Scholar 

  • Sunahara, T., Ishizaka, K., & Mogi, M. (2002). Habitat size: A factor determining the opportunity for encounters between mosquito larvae and aquatic predators. Journal of Vector Ecology, 27, 8–20.

    Google Scholar 

  • Sunish, I. P., & Reuben, R. (2002). Factors influencing the abundance of Japanese encephalitis vectors in rice field in India - II. Biotic. Medical and Veterinary Entomology, 16, 1–9. doi:10.1046/j.1365–2915.2002.00325.x

    Article  CAS  Google Scholar 

  • Thullen, J. S., Sartoris, J. J., & Walton, W. E. (2002). Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production. Ecological Engineering, 18, 441–457. doi:10.1016/SO925–8574(01)00105–7.

    Article  Google Scholar 

  • Victor, T. J., & Reuben, R. (1999). Population dynamics of mosquito immatures and the succession in abundance of aquatic insects in rice fields in Madurai, south India. Indian Journal of Malariology, 36, 19–32.

    CAS  Google Scholar 

  • Victor, T. J., & Reuben, R. (2000). Effects of organic and inorganic fertilizers on mosquito populations in ricefields of southern India. Medical and Veterinary Entomology, 14, 361–368. doi:10.1111/j.1365-2915.2000.00255.x.

    Article  CAS  Google Scholar 

  • Willott, E. (2004). Restoring nature, without mosquitoes? Restoration Ecology, 12, 147–153. doi:10.1111/j.1061–2971.2004.00392.x.

    Article  Google Scholar 

  • Wilson, A. L., Watts, R. J., & Stevens, M. M. (2007). Effects of different management regimes on aquatic macroinvertebrate diversity in Australian rice fields. Ecological Research, 23, 565–572. doi:10.1007/s11284-007–0410-z.

    Article  Google Scholar 

  • Yanoviak, S. P. (2001). Predation, resource availability, and community structure in Neotropical water filled tree holes. Oecologia, 126, 125–133. doi:10.1007/s004420000493.

    Article  Google Scholar 

  • Yee, D. A., & Juliano, S. A. (2007). Abundance matters: A field experiment testing the more individuals hypothesis for richness–productivity relationships. Oecologia, 153, 153–162. doi:10.1007/s00442–007–0707–1.

    Article  Google Scholar 

  • Yee, D. A., Kaufman, M. G., & Juliano, S. A. (2007a). The significance of ratios of detritus types and microorganism productivity to competitive to competitive interactions between aquatic insect detritivores. Journal of Animal Ecology, 76, 1105–1115. doi:10.1111/j.1365–2656.2007.01297.x.

    Article  Google Scholar 

  • Yee, D. A., Yee, S. H., Kneitel, J. M., & Juliano, S. A. (2007b). Richness–productivity relationships between trophic levels in a detritus-based system: Significance of abundance and trophic linkage. Oecologia, 154, 377–385. doi:10.1007/s00442–007–0837–5.

    Article  Google Scholar 

  • Zar, J. H. (1999). Biostatistical analysis (4th ed.). New Delhi, India: Pearson Education (Singapore) Pte Ltd., (Indian Branch).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam K. Saha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Aditya, G., Saha, N. et al. An assessment of macroinvertebrate assemblages in mosquito larval habitats—space and diversity relationship. Environ Monit Assess 168, 597–611 (2010). https://doi.org/10.1007/s10661-009-1137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1137-9

Keywords

Navigation