Skip to main content
Log in

Studying the effectiveness of various chromophores of the 5-aryl-2,2ʹ-bipyridine series for the sensitization of lanthanide(III) cations

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A systematic study of the effectiveness of various chromophores of the 5-aryl-2,2ʹ-bipyridine series was carried out in terms of sensitization of lanthanide(III) cations. For this purpose, the corresponding DTTA-appended 5-aryl-2,2′-bipyridines were synthesized in good yields by using the “1,2,4-triazine” methodology, and their europium(III) and terbium(III) complexes were prepared. The photophysical properties were studied for all the obtained chelates, and the influence of the nature of the aryl substituent of the bipyridine core was estimated. The positive influence of the halogen atoms as well as a methyl group on the efficiency of the lanthanide(III) cation sensibilization was demonstrated. The influence of the nature of the residue of the polyaminocarboxylic acid fragment in the ligand on the luminescent characteristics of its lanthanide complexes was also studied.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.E. Bodman, S.J. Butler, Advances in anion binding and sensing using luminescent lanthanide complexes. Chem. Sci. 12, 2716–2734 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. K. Grzhegorzhevskii, E. Rudakova, A. Krinochkin, D. Kopchuk, Y. Shtaitz, L. Adamova, G. Kim, E. Rusinova, A. Shmidt, A polyacrylamide–chitosan semi-interpenetrating self-healing network with embedded Keplerate Mo132 for pH-controlled release of Eu-fluorescent tags. New J. Chem. 47, 17007–17019 (2023)

    Article  CAS  Google Scholar 

  3. M.L. Aulsebrook, B. Graham, M.R. Grace, K.L. Tuck, Lanthanide complexes for luminescence-based sensing of low molecular weight analytes. Coord. Chem. Rev. 375, 191–220 (2018)

    Article  CAS  Google Scholar 

  4. C. Pettinari, A. Drozdov, Y. Belousov, Luminescent materials with turn-on and ratiometric sensory response based on coordination compounds of lanthanides, in Rare Earth Elements. ed. by M.T. Aide (IntechOpen, 2023), p.164

    Google Scholar 

  5. M.L.P. Reddy, V. Divya, K.S. Bejoymohandas, Luminescent lanthanide molecular materials as potential probes for the recognition of toxic and biologically important cations. Dyes Pigm. 215, 111248 (2023)

    Article  CAS  Google Scholar 

  6. G.E. Gomez, M. dos Santo Afonso, H.A. Baldoni, F. Roncaroli, G.J.A.A. Soler-Illia, Luminescent lanthanide metal organic frameworks as chemosensing platforms towards agrochemicals and cations. Sensors 19, 1260 (2019)

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  7. Y. Kitagawa, T. Nakai, S. Hosoya, S. Shoji, Y. Hasegawa, Luminescent lanthanide complexes for effective oxygen-sensing and singlet oxygen generation. ChemPlusChem 8, e202200445 (2023)

    Article  Google Scholar 

  8. E. Mathieu, A. Sipos, E. Demeyere, D. Phipps, D. Sakaveli, K.E. Borbas, Lanthanide-based tools for the investigation of cellular environments. Chem. Commun. 54, 10021–10035 (2018)

    Article  CAS  Google Scholar 

  9. M.C. dos Santos, A. Runser, H. Bartenlian, A.M. Nonat, L.J. Charbonnière, A.S. Klymchenko, N. Hildebrandt, A. Reisch, Lanthanide-complex-loaded polymer nanoparticles for background-free single-particle and live-cell imaging. Chem. Mater. 31, 4034–4041 (2019)

    Article  Google Scholar 

  10. L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, E. Tondello, Design of luminescent lanthanide complexes: from molecules to highly efficient photo-emitting materials. Coord. Chem. Rev. 254, 487–505 (2010)

    Article  CAS  Google Scholar 

  11. M. Hasegawa, H. Ohmagari, H. Tanaka, K. Machida, Luminescence of lanthanide complexes: from fundamental to prospective approaches related to water- and molecular-stimuli. J. Photochem. Photobiol. C. 50, 100484 (2022)

    Article  CAS  Google Scholar 

  12. J.P. Cross, A. Dadabhoy, P.G. Sammes, The sensitivity of the lehn cryptand—europium and terbium (III) complexes to anions compared to a coordinatively saturated systems. J. Lumin. 110, 113–124 (2004)

    Article  CAS  Google Scholar 

  13. C.P. Montgomery, E.J. Newa, L.O. Palssona, D. Parker, A.S. Batsanov, L. Lamarque, Emissive and cell-permeable 3-pyridyl- and 3-pyrazolyl-4-azaxanthone lanthanide complexes and their behaviour in cellulo. Helv. Chim. Acta 92, 2186–2213 (2009)

    Article  CAS  Google Scholar 

  14. S. Quici, G. Marzanni, M. Cavazzini, P.L. Anelli, M. Botta, E. Gianolio, G. Accorsi, N. Armaroli, F. Barigelletti, Highly luminescent Eu3+ and Tb3+ macrocyclic complexes bearing an appended phenanthroline chromophore. Inorg. Chem. 41, 2777–2784 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. S. Quici, M. Cavazzini, G. Marzanni, G. Accorsi, N. Armaroli, B. Ventura, F. Barigelletti, Visible and near-infrared intense luminescence from water-soluble lanthanide [Tb (III), Eu (III), Sm (III), Dy (III), Pr (III), Ho (III), Yb (III), Nd (III), Er (III)] complexes. Inorg. Chem. 44, 529–537 (2005)

    Article  PubMed  CAS  Google Scholar 

  16. S. Quici, C. Scalera, M. Cavazzini, G. Accorsi, M. Bolognesi, L. Armelao, G. Bottaro, Highly photoluminescent silica layers doped with efficient Eu(III) and Tb(III) antenna complexes. Chem. Mater. 21, 2941–2949 (2009)

    Article  CAS  Google Scholar 

  17. A.P. Krinochkin, D.S. Kopchuk, G.A. Kim, E.B. Gorbunov, I.S. Kovalev, S. Santra, G.V. Zyryanov, A. Majee, V.L. Rusinov, O.N. Chupakhin, Synthesis and luminescence of new water-soluble lanthanide complexes of DTTA-containing 4-(4-methoxyphenyl)-2, 2′-bipyridine. Inorg. Chim. Acta 478, 49–53 (2018)

    Article  CAS  Google Scholar 

  18. A.P. Krinochkin, D.S. Kopchuk, G.A. Kim, I.N. Ganebnykh, I.S. Kovalev, S. Santra, G.V. Zyryanov, A. Majee, V.L. Rusinov, O.N. Chupakhin, Highly-luminescent DTTA-appended water-soluble lanthanide complexes of 4-(Het) aryl-2, 2′-bipyridines: synthesis and photophysical properties. ChemistrySelect 4, 6377–6381 (2019)

    Article  CAS  Google Scholar 

  19. A.P. Krinochkin, D.S. Kopchuk, G.A. Kim, V.A. Shevyrin, I.N. Egorov, S. Santra, E.V. Nosova, G.V. Zyryanov, O.N. Chupakhin, V.N. Charushin, Highly-luminescent DTTA-appended lanthanide complexes of 4-(multi)fluoroaryl-2, 2′-bipyridines: synthesis and photophysical studies. Polyhedron 195, 114962 (2021)

    Article  CAS  Google Scholar 

  20. A.P. Krinochkin, D.S. Kopchuk, G.A. Kim, I.N. Ganebnykh, I.S. Kovalev, G.V. Zyryanov, F. Li, V.L. Rusinov, O.N. Chupakhin, DTTA-appended 6-phenyl-and 5, 6-diphenyl-2, 2′-bipyridines as new water soluble ligands for lanthanide cations. Polyhedron 134, 59–64 (2017)

    Article  CAS  Google Scholar 

  21. A.P. Krinochkin, D.S. Kopchuk, G.A. Kim, V.A. Shevyrin, S. Santra, M. Rahman, O.S. Taniya, G.V. Zyryanov, V.L. Rusinov, O.N. Chupakhin, Water-soluble luminescent lanthanide complexes based on C6-DTTA-appended 5-aryl-2, 2′-bipyridines. Polyhedron 181, 114473 (2020)

    Article  CAS  Google Scholar 

  22. A.M. Prokhorov, V.N. Kozhevnikov, D.S. Kopchuk, H. Bernard, N. Le Bris, R. Tripier, H. Handel, B. Koenig, D.N. Kozhevnikov, 1, 2, 4-Triazine method of bipyridine ligand synthesis for the preparation of new luminescent Eu (III) complexes. Tetrahedron 67, 597–607 (2011)

    Article  CAS  Google Scholar 

  23. D.S. Kopchuk, D.E. Pavlyuk, I.S. Kovalev, G.V. Zyryanov, V.L. Rusinov, O.N. Chupakhin, Synthesis of a new DTTA- and 5-phenyl-2,2′-bipyridine-based ditopic ligand and its Eu3+ complex. Can. J. Chem. 94, 599–603 (2016)

    Article  CAS  Google Scholar 

  24. J. Platzek, U. Niedballa, B. Radeuchel, U.S. Patent 5514810A, 1996

  25. A.M. Prokhorov, D.N. Kozhevnikov, Reactions of triazines and tetrazines with dienophiles. Chem. Heterocycl. Compd. 48, 1153–1176 (2012)

    Article  CAS  Google Scholar 

  26. D.L. Boger, J.S. Panek, Diels-Alder reaction of heterocyclic azadienes. I. Thermal cycloaddition of 1,2,4-triazine with enamines: simple preparation of substituted pyridines. J. Org. Chem. 46, 2179–2182 (1981)

    Article  CAS  Google Scholar 

  27. G.R. Pabst, O.C. Pfüller, S. Sauer, The new and simple ‘LEGO’system: synthesis and reactions of ruthenium (II) complexes. Tetrahedron 55, 8045–8064 (1999)

    Article  CAS  Google Scholar 

  28. A. Rykowski, D. Branowska, K. Kielak, A novel one-pot synthesis of annulated 2, 2′-bipyridine ligands by inverse electron demand Diels-Alder reaction of 5,5′-bi-1,2,4-triazines. Tetrahedron Lett. 41, 3657–3659 (2000)

    Article  CAS  Google Scholar 

  29. O.V. Shabunina, E.S. Starnovskaya, Y.K. Shtaits, D.S. Kopchuk, I.S. Kovalev, G.V. Zyryanov, V.L. Rusinov, O.N. Chupakhin, A Modified Synthesis of 6-Aryl-3-(6-R-pyridin-2-yl)-1, 2, 4-triazines. Russ. J. Org. Chem. 54, 1576–1578 (2018)

    Article  CAS  Google Scholar 

  30. C. Platas-Iglesias, M. Mato-Iglesias, K. Djanashvili, R.N. Muller, L. Vander Elst, J.A. Peters, A. DeBlas, T. Rodriguez-Blas, Lanthanide chelates containing pyridine units with potential application as contrast agents in magnetic resonance imaging. Chem. Eur. J. 10, 3579–3590 (2004)

    Article  PubMed  CAS  Google Scholar 

  31. L. Lin, D.-H. Chen, R. Yu, X.-L. Chen, W.-J. Zhu, D. Liang, J.-F. Chang, Q. Zhang, C.-Z. Lu, Photo-and electro-luminescence of three TADF binuclear Cu (I) complexes with functional tetraimine ligands. J. Mater. Chem. C 5, 4495–4504 (2017)

    Article  CAS  Google Scholar 

  32. T.V. Saraswathi, V.R. Srinivasan, Syntheses and spectral characteristics of 6-mono-, 3,6-di- and 3,5,6-trisubstituted-1,2,4-triazines. Tetrahedron 33, 1043–1051 (1977)

    Article  CAS  Google Scholar 

  33. Y.K. Shtaitz, M.I. Savchuk, D.S. Kopchuk, O.S. Taniya, S. Santra, G.V. Zyryanov, A.I. Suvorova, V.L. Rusinov, O.N. Chupakhin, Efficient synthesis of methyl 6-(6-Aryl-1,2,4-triazin-3-yl)pyridine-2-carboxylates. Russ. J. Org. Chem. 56, 548–551 (2020)

    Article  CAS  Google Scholar 

  34. K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishic, S. Tobita, Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys. Chem. Chem. Phys. 11, 9850–9860 (2009)

    Article  PubMed  CAS  Google Scholar 

  35. A. Beeby, I.M. Clarkson, R.S. Dickins, S. Faulkner, D. Parker, L. Royle, A.S. De Sousa, J.A.G. Williams, M. Woods, Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states. J. Chem. Soc. Perkin. Trans. 2, 493–504 (1999)

    Article  Google Scholar 

  36. D. Parker, Luminescent lanthanide sensors for pH, pO2 and selected anions. Coord. Chem. Rev. 205, 109–130 (2000)

    Article  CAS  Google Scholar 

  37. D.S. Kopchuk, A.P. Krinochkin, D.N. Kozhevnikov, P.A. Slepukhin, Novel neutral lanthanide complexes of 5-aryl-2, 2′-bipyridine-6′-carboxylic acids with improved photophysical properties. Polyhedron 118, 30–36 (2016)

    Article  CAS  Google Scholar 

  38. B.B. Dey, C.—Hydrazoximes of methyl-and phenyl-glyoxals. J. Chem. Soc. 105, 1039–1046 (1914)

    Article  CAS  Google Scholar 

  39. L.N. Dawe, T.S.M. Abedin, T.L. Kelly, L.K. Thompson, D.O. Miller, L. Zhao, C. Wilson, M.A. Leech, J.A.K. Howard, Self-assembled polymetallic square grids ([2× 2] M 4,[3× 3] M 9) and trigonal bipyramidal clusters (M 5)—structural and magnetic properties. J. Mater. Chem. 16, 2645–2659 (2006)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement #075-15-2022-1118 dated 29.06.2022).

Author information

Authors and Affiliations

Authors

Contributions

AM proposed the concept design, drafted the manuscript and approved the final version; APK synthesized the complexes and drafted the manuscript; MIV and YKS synthesized the ligands and drafted the manuscript; ESS synthesized the starting 1,2,4-triazines; DSK drafted the manuscript and gave the final version; SS drafted the article and proposed the concept design; YL proposed the concept design and analyzed the obtained results; GVZ and ONC proposed the concept design, analyzed the obtained results, drafted the manuscript and approved the final version.

Corresponding authors

Correspondence to Adinath Majee or Sougata Santra.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7650 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majee, A., Krinochkin, A.P., Valieva, M.I. et al. Studying the effectiveness of various chromophores of the 5-aryl-2,2ʹ-bipyridine series for the sensitization of lanthanide(III) cations. J IRAN CHEM SOC 21, 731–740 (2024). https://doi.org/10.1007/s13738-023-02954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02954-z

Keywords

Navigation