Skip to main content
Log in

Highly sensitive and molecular selective electrochemical sensing of 6-benzylaminopurine with multiwall carbon nanotube@SnS2-assisted signal amplification

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A selective and sensitive electrochemical sensor has been prepared for the determination of 6-benzylaminopurine (BAP) in complex matrices. It was fabricated by thoroughly mixing multiwall carbon nanotube@SnS2 (MWNT@SnS2) with molecularly imprinted chitosan (CHIT), and then covering on the surface of glassy carbon electrode (GCE). The core/shell-structured MWNT@SnS2 dramatically improved the sensitivity of the developed sensor through providing increased binding and preconcentration onto the modified GCE, while CHIT imprinted with BAP served as the selective recognition sites. Several experimental parameters such as pH, amount of modifier, extraction time, and incubation time were optimized. Under the optimal conditions, selective detection of BAP in a linear concentration range of 0.1 nM–10 mM was performed with the detection limit of 50 pM (3S b/S). The relative standard deviation of repeatability and reproducibility of the sensor was 1.14 and 2.42 %, respectively. Furthermore, the sensor was successfully applied to the determination of BAP in vegetable and fruit samples, indicating the molecularly imprinted polymer-based electrochemical sensing platform might provide a rapid, sensitive, and cost-effective strategy for BAP determination and related food safety analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bui MPN, Seo SS (2015) Electrochemical analysis of parathion-ethyl using zirconium oxide–laponite nanocomposites-modified glassy carbon electrode. J Appl Electrochem 45:365–373. doi:10.1007/s10800-015-0789-0

    Article  CAS  Google Scholar 

  2. Barclay GF, McDavid CR (1998) Effect of benzylaminopurine on fruit set and seed development in pigeonpea. Sci Hortic Amst 72:81–86. doi:10.1016/S0304-4238(97)00110-6

    Article  CAS  Google Scholar 

  3. Li X, Chen X, Yao X, Jin M, Jiang J (2005) Determination of 6-benzylaminopurine in bean-sprout by high performance liquid chromatography. Chin J Health Lab Technol 15:149–151. doi:10.3969/j.issn.1004-8685.2005.02.010

    CAS  Google Scholar 

  4. Zhang YL, Liu H, Wang SL, Ding T, Xu NS, Yu KY, Shen WJ, Zhao ZY, Liu Y, Wu B, Zhang R, Shen CY (2015) Simultaneous determination of eight kinds of drug residues in sprouts by high performance liquid chromatography–tandem mass spectrometry. J Instrum Anal 34:164–170. doi:10.3969/j.ssn.1004-4957.2015.02.007

    CAS  Google Scholar 

  5. Qiao M, Liu SP, Liu ZF, Yang JD, Zhu JH, Hu XL (2014) Overlapping of second order scattering and frequency double scattering spectra method and resonance Rayleigh scattering method for the determination of 6-benzyladenine in bean sprout. Food Anal Methods 7:1737–1744. doi:10.1007/s12161-014-9812-z

    Article  Google Scholar 

  6. Wu PG, Tan Y, Zhang J, Wang LY, Tang J, Jiang W, Pan XD, Ma BJ, Ni ZN, Wang TJ (2014) Determination of 10 plant growth regulators in bean sprouts by sequential cleaning-gas chromatography–mass spectrometry. Chin J Anal Chem 42:866–871. doi:10.3724/SP.J.1096.2014.40105

    CAS  Google Scholar 

  7. Zhao XH, Feng XM, Zhu QH, Yang Q, Li XY, Zhang J (2014) Determination of kinetin and 6-benzylaminopurine in fruits and vegetables based on l-Phe fluorescence quenching. Jiangsu J Agric Sci 30:880–884. doi:10.969/j.ssn.1000-4440.2014.04.030

    Google Scholar 

  8. Lee S, Kim GY, Moon JH (2013) Detection of 6-benzylaminopurine plant growth regulator in bean sprouts using OFRR biosensor and QuEChERS method. Anal Methods 5:961–966. doi:10.1039/c2ay26136g

    Article  CAS  Google Scholar 

  9. Zhang P, Zheng DW, Liu J, Zhong RG, Liu CW, Guo X, Wang H (2012) Rapid detection of 6-benzylaminopurine residues in sprout beans by surface-enhanced Raman spectroscopy. Spectrosc Spectr Anal 32:1266–1269. doi:10.3964/j.issn.1000-0593(2012)05-1266-04

    CAS  Google Scholar 

  10. Assuncao NA, Arruda SCC, Martinelli AP, Carrilho E (2009) Direct determination of plant-growth related metabolites by capillary electrophoresis with spectrophotometric UV detection. J Braz Chem Soc 20:183–187. doi:10.1590/S0103-50532009000100027

    Article  CAS  Google Scholar 

  11. Zhao G, Liu KZ, Lin S, Liang J, Guo XY, Zhang ZJ (2003) Application of a carbon nanotube modified electrode in anodic stripping voltammetry for determination of trace amounts of 6-benzylaminopurine. Microchim Acta 143:255–260. doi:10.1007/s00604-003-0078-1

    Article  CAS  Google Scholar 

  12. Li CY (2006) Electrochemical determination of 6-benzylaminopurine (6-BAP) using a single-wall carbon nanotube-dicetyl phosphate film coated glassy carbon electrode. Bull Korean Chem Soc 27:991–994. doi:10.5012/bkcs.2006.27.7.991

    Article  Google Scholar 

  13. Sun D, Zhang HJ (2006) Voltammetric determination of 6-benzylaminopurine (6-BAP) using an acetylene black–dihexadecyl hydrogen phosphate composite film coated glassy carbon electrode. Anal Chim Acta 557:64–69. doi:10.1016/j.aca.2005.10.002

    Article  CAS  Google Scholar 

  14. Zhang YF, Bo XJ, Guo LP (2012) Electrochemical behavior of 6-benzylaminopurine and its detection based on Pt/ordered mesoporous carbons modified electrode. Anal Methods 4:736–741. doi:10.1039/C2AY05712C

    Article  CAS  Google Scholar 

  15. Rahman LU, Shah A, Khan SB, Asiri AM, Hussain H, Han C, Qureshi R, Ashiq MN, Zia MA, Ishaq M, Kraatz HB (2015) Synthesis, characterization, and application of Au–Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene. J Appl Electrochem 45:463–472. doi:10.1007/s10800-015-0807-2

    Article  Google Scholar 

  16. Rahman LU, Shah A, Qureshi R, Khan SB, Asiri AM, Shah AUHA, Ishaq M, Khan MS, Lunsford SK, Zia MA (2015) Spectroscopic analysis of Au–Cu alloy nanoparticles of various compositions synthesized by a chemical reduction method. Adv Mater Sci Eng. doi:10.1155/2015/638629

    Google Scholar 

  17. Rahman LU, Shah A, Lunsford SK, Han C, Nadagouda MN, Sahle-Demessie E, Qureshi R, Khan MS, Kraatz HB, Dionysiou DD (2015) Monitoring of 2-butanone using a Ag–Cu bimetallic alloy nanoscale electrochemical sensor. RSC Adv 5:44427–44434. doi:10.1039/c5ra03633j

    Article  CAS  Google Scholar 

  18. Huang JD, Zhang XM, Liu S, Lin Q, He XR, Xing XR, Lian WJ (2011) Electrochemical sensor for bisphenol A detection based on molecularly imprinted polymers and gold nanoparticles. J Appl Electrochem 41:1323–1328. doi:10.1007/s10800-011-0350-8

    Article  CAS  Google Scholar 

  19. Wang YY, Ya Y, Tan XH, Huang KJ, Li CY (2010) Investigation on electrochemical preparation of methyl parathion imprinted film modified electrode and its application. J Xinyang Norm Univ (Nat Sci Ed) 23:566–570. doi:10.3969/j.issn.1003-0972.2014.01.018

    CAS  Google Scholar 

  20. Ye J, Chen Y, Liu Z (2014) A boronate affinity sandwich assay: an appealing alternative to immunoassays for the determination of glycoproteins. Angew Chem Int Ed 53:10386–10389. doi:10.1002/anie.201405525

    Article  CAS  Google Scholar 

  21. Zhang CJ, Si SH, Yang ZP (2015) Design of molecularly imprinted TiO2/carbon aerogel electrode for the photoelectrochemical determination of atrazine. Sens Actuators B 211:206–212. doi:10.1016/j.snb.2015.01.079

    Article  CAS  Google Scholar 

  22. Moreira FTC, Sharma S, Dutra RAF, Noronha JPC, Cass AEG, Sales MGF (2015) Detection of cardiac biomarker proteins using a disposable based on a molecularly imprinted polymer grafted onto graphite. Microchim Acta 182:975–983. doi:10.1007/s00604-014-1409-0

    Article  CAS  Google Scholar 

  23. Justino CIL, Freitas AC, Pereira R, Duarte AC, Santos TAPR (2015) Recent developments in recognition elements for chemical sensors and biosensors. Trends Anal Chem 68:2–17. doi:10.1016/j.trac.2015.03.006

    Article  CAS  Google Scholar 

  24. Liu YX, Wang WW, Wei H, Li JW, Lu XQ, Liu XH (2014) Simultaneous determination of dihydroxybenzene isomers based on thionine functionalized multiwall carbon nanotubes modified electrode. J Appl Electrochem 44:667–674. doi:10.1007/s10800-014-0674-2

    Article  CAS  Google Scholar 

  25. Inam R, Bilgin C (2013) Square wave voltammetric determination of methiocarb insecticide based on multiwall carbon nanotube paste electrode. J Appl Electrochem 43:425–432. doi:10.1007/s10800-013-0526-5

    Article  CAS  Google Scholar 

  26. Xu SJ, Zhang SM, Zhang JX, Tan T, Liu Y (2014) A maize-like FePO4@MCNT nanowire composite for sodium-ion batteries via a microemulsion technique. J Mater Chem A 2:7221–7228. doi:10.1039/c4ta00239c

    Article  CAS  Google Scholar 

  27. Liu ZX, Deng HQ, Mukherjee PP (2015) Evaluating pristine and modified SnS2 as a lithium-ion battery anode: a first-principles study. ACS Appl Mater Interfaces 7:4000–4009. doi:10.1021/am5068707

    Article  CAS  Google Scholar 

  28. Zhong HX, Zhou P, Yue L, Tang DP, Zhang LZ (2014) Micro/nano-structured SnS2 negative electrodes using chitosan derivatives as water-soluble binders for Li-ion batteries. J Appl Electrochem 44:45–51. doi:10.1007/s10800-013-0590-x

    Article  CAS  Google Scholar 

  29. Li J, Yang ZJ, Tang Y, Zhang YC, Hu XY (2013) Carbon nanotubes–nanoflake-like SnS2 nanocomposite for direct electrochemistry of glucose oxidase and glucose sensing. Biosens Bioelectron 41:698–703. doi:10.1016/j.bios.2012.09.059

    Article  Google Scholar 

  30. Wang Z, Luan D, Madhavi S, Hu Y, Lou XW (2012) Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ Sci 5:5252–5256. doi:10.1039/C1EE02831F

    Article  CAS  Google Scholar 

  31. Sun HY, Ahmad M, Luo J, Shi YY, Shen WC, Zhu J (2014) SnS2 nanoflakes decorated multiwalled carbon nanotubes as high performance anode materials for lithium-ion batteries. Mater Res Bull 49:319–324. doi:10.1016/j.materresbull.2013.09.005

    Article  CAS  Google Scholar 

  32. Jin MC, Ren YP, Chen XH (2007) Determination of 6-benzyladenine in bean sprout by LC–ESI-IT–MS-MS. Chromatographia 66:407–410. doi:10.1365/s10337-007-0311-x

    Article  CAS  Google Scholar 

  33. Yang L, Yan XP, Wang QW, Wang Q, Xia H (2015) One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts. Carbohydr Res 404:87–92. doi:10.1016/j.carres.2014.12.001

    Article  CAS  Google Scholar 

  34. Liu H, Su Y, Chen P, Wang Y (2013) Microwave-assisted solvothermal synthesis of 3D carnation-like SnS2 nanostructures with high visible light photocatalytic activity. J Mol Catal A 378:285–292. doi:10.1016/j.molcata.2013.06.021

    Article  CAS  Google Scholar 

  35. Gong J, Liu J, Jiang ZW, Wen X, Mijowska E, Tang T, Chen XC (2015) A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue. J Colloid Interface Sci 445:195–204. doi:10.1016/j.jcis.2014.12.078

    Article  CAS  Google Scholar 

  36. Hai B, Tang KB, Wang CR, An CH, Yang Q, Shen GZ, Qian YT (2001) Synthesis of SnS2 nanocrystals via a solvothermal process. J Cryst Growth 225:92–95. doi:10.1016/S0022-0248(01)01030-2

    Article  CAS  Google Scholar 

  37. Wang Q, Paim LL, Zhang XH, Wang SF, Stradiotto NR (2014) An electrochemical sensor for reducing sugars based on a glassy carbon electrode modified with electropolymerized molecularly imprinted poly-ophenylenediamine film. Electroanalysis 26:1612–1622. doi:10.1002/elan.201400114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Science Foundation of China (No. 61201091), the Program for University Key Scientific Research of Henan (No. 15A150025), the Program for University Innovative Research Team of Henan (No. 15IRTSTHN001), and the Key Scientific and Technological Project of Henan (No. 152102210341). The Center of Analysis and Testing of Xinyang Normal University was also acknowledged for its help in the EDX, SEM, and TEM observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, T., Lv, Z., Sun, Y. et al. Highly sensitive and molecular selective electrochemical sensing of 6-benzylaminopurine with multiwall carbon nanotube@SnS2-assisted signal amplification. J Appl Electrochem 46, 389–401 (2016). https://doi.org/10.1007/s10800-016-0923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0923-7

Keywords

Navigation