Skip to main content
Log in

Photocatalytic and therapeutic applications of the synthesized nickle oxide (NiO) nanoparticles

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Nickel oxide (NiO) nanoparticles (NPs) synthesized by co-precipitation method were characterized by UV–Vis, XRD, EDX, SEM and FTIR techniques. XRD analysis revealed partially cubic crystal structure of NiO NPs, with an average particle size of 35.67 nm. The prepared NPs were also used for the photodegradation of Rose Bengal (RB), Carmine and Bromothymol Blue (BB) dyes. The activation energies calculated for the photodegradation reactions were 9.54 kJ/mol, 11.68 kJ/mol and 11.2 kJ/mol, respectively, for RB, Carmine and BB dyes. The first-order reaction kinetics was followed by the photodegradation reaction of three dyes over NiO NPs as a catalyst. The effect of different reaction parameters was also studied, i.e., at pH 4, and time duration of 240, 160 and 200 min about 92%, 90% and 91% degradation was found for RB, Carmine and BB, respectively. Low dye concentration (10 ppm), maximum catalyst dosage (0.05 g) and increase in temperature up to 50 °C were found to facilitate dye degradation. The recyclability study revealed that NiO NPs could be reused for the degradation of selected dyes; however, the first recovery's performance was superior to the second recovery. The results also indicated that with increase in the concentration of NPs from 2- to 4-mg antioxidant activities, Catalase activity (CAT), Superoxide dismutase activity (SOD), Peroxidase activity (POD) and Reduced glutathione (GSH) activity also increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13

Similar content being viewed by others

References

  1. Z. Kilic, IZUJIST 3(1), 129–132 (2021)

    Google Scholar 

  2. R. Khatun, Int. J Sci. Res Pub. 7(8), 269–270 (2017)

    Google Scholar 

  3. A. Sayal, S. Amjad, M. Bilal, A. Pervez, Q. Mahmood, M. A. Afridi, Polish J Environ. Stud. 25(2),765–775 (2016)

  4. M. Sakamoto, T. Ahmed, S. Begum, H. Huq, Sustainability 11(7), 1951 (2019)

    Article  Google Scholar 

  5. R. Mia, M. Selim, A.M. Shamim, M. Chowdhury, S. Sultana, M. Armin, H. Naznin, Review on various types of pollution problem in textile dyeing & printing industries of Bangladesh and recommandation for mitigation. J. Text. Eng. Fash. Technol. 5(4), 220–226 (2019)

    Google Scholar 

  6. K.M. Al Aqad, C. Basheer, J. Phy. Org. Chem. 34(1), 4117 (2021)

    Article  Google Scholar 

  7. F.D. Chequer, G.R. De Oliveira, E.A. Ferraz, J.C. Cardoso, M.B. Zanoni, D.P. de Oliveira, Eco-friendly Textile Dyeing Finishing 6(6), 151–76 (2013)

    Google Scholar 

  8. A. Bożęcka, M. Orlof-Naturalna, M. Kopeć, J. Ecol. Eng. 22(9)(2021).

  9. C. Sahoo, A.K. Gupta, I.M. Sasidharan, Pillai, J. Environ. Sci. Hlth. Part A 47(10), 1428–1438 (2012)

    Article  CAS  Google Scholar 

  10. M. Hashem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, Z.A. Talib, S.B. Paiman, M.A. Kamarudeen, Results phys. 1(6), 1024–1030 (2016)

    Article  Google Scholar 

  11. S.D. Khairnar, V.S. Shrivastava, J. Taibah Univ. Sci. 13(1), 1108–1118 (2019)

    Article  Google Scholar 

  12. I.A. Mamonova, I.V. Babushkina, I.A. Norkin, E.V. Gladkova, M.D. Matasov, D.M. Puchin’yan, Nanotechnol. Russ. 10(1), 128–134 (2015)

    Article  CAS  Google Scholar 

  13. J.A. Shaikh, J. Iran Chem. Soc. 19, 4149–4158 (2022)

    Article  CAS  Google Scholar 

  14. W. Abdussalam-Mohammed, J. Chem. Rev. 1(3), 243–51 (2019)

    Article  Google Scholar 

  15. M. Irani, M.M. Ghafurian, M.M. Khorasani, R. Mehrkhah, O. Mahian, J Taiwan Inst Chem Eng. 128, 1253–1260 (2021)

    Article  Google Scholar 

  16. R. Mehrkhah, E.K. Goharshadi, E. Lichtfouse, S. Ahn, S. Wongwises, W. Yu, O. Mahian, Environ. Chem Lett. 21, 285–318 (2023)

    Article  CAS  Google Scholar 

  17. G. Ilbeigi, A. Kariminik, M.H. Moshafi, Int. J Basic Sci. Med. 4(2), 69–74 (2019)

    Article  Google Scholar 

  18. P. C. Jeyaraj, R. Palanivel, S. Dhanasekaran, J. Nanoparticles. 1–13(2016)

  19. M. M. Y. Bahari, S. K. D Sadrnezhaad, J. Nanomater. 1–4 (2008)

  20. S.U. Din, H. Iqbal, S. Haq, P. Ahmad, M.U. Khandaker, H.O. Elansary, F.F. Al-Harbi, S.A. Abdelmohsen, T.K. El-Abedin, Crystals 12(2), 146 (2022)

    Article  CAS  Google Scholar 

  21. K. Pooja, Dipali, Shinde, Int. J Adv. Res. 5(5), 1333–1338 (2017)

    Article  Google Scholar 

  22. M.K. Nazarbad, E.K. Goharshadi, H.S. Sajjadzadeh, J. Phys. Chem. C 126(19), 8327–8336 (2022)

    Article  Google Scholar 

  23. K. Varunkumar, R. Hussain, G. Hegde, A.S. Ethiraj, Mater. Sci. Semicon. Proces. 66, 149–156 (2017)

    Article  CAS  Google Scholar 

  24. H. Qiao, Z. Wei, H. Yang, L. Zhu, X.Yan, J. Nanomater. 1–5 (2009)

  25. A. Rahdar, M. Aliahmad, Y. Azizi, JNS 5, 145–151 (2015)

    Google Scholar 

  26. Q. I. Rahman, M. Ahmad, S. K. Misra, M. Lohani, Mater. Lett. 91, 170–174 (2013)

  27. S. Ali, F.A. Jan, R.N. Ullah, Water Sci. Technol. 85(4), 1040–52 (2022)

    Article  CAS  PubMed  Google Scholar 

  28. F. Naz, A. Imran, W. Ullah, K. Saeed, S. Ali, M.N. Khan, Iran. J. Chem. Chem. Eng. 41(8), 2790–2804 (2022)

    CAS  Google Scholar 

  29. M. Rahmat, A. Rehman, S. Rahmat, H.N. Bhatti, M. Iqbal, W.S. Khan, A. Nazir, J. Mater. Res. Technol. 8(6), 5149–5159 (2019)

    Article  CAS  Google Scholar 

  30. M.K. Nazarbad, E.K. Goharshadi, Sol. Energy Mater Sol. Cells 160, 484–493 (2017)

    Article  Google Scholar 

  31. A. Kumar, G. Pandey, Mater. Sci. Eng. Int. J. 1(3), 1–10 (2017)

    CAS  Google Scholar 

  32. A. Salama, A. Mohamed, N.M. Aboamera, T.A. Osman, A. Khattab, Photocatalytic degradation of organic dyes using composite nanofibers under UV irradiation. Appl. Nanosci. 8(1), 155–161 (2018)

    Article  CAS  Google Scholar 

  33. S. Alahiane, S. Qourzal, M. El Ouardi, A. Abaamrane, A. Assabbane Amer J. Anal. Chem. 5, 445–454 (2014)

  34. M. Ramesh, M.P.C. Rao, S. Anandan, H. Nagaraja, J. Mater, Res. 33, 601–610 (2018)

    CAS  Google Scholar 

  35. R. Vahini, P.S. Kumar, S. Karuthapandian, Appl. Phys. A 122, 744 (2016)

    Article  Google Scholar 

  36. Z. Sabouri, A. Akbari, H.A. Hosseini, M. Darroudi, J. Molec. Struc. 1173(5), 931–936 (2018)

    Article  CAS  Google Scholar 

  37. A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, L.J. Kennedy, R.J. Ramalingam, H.A. Al-Lohedan, J. Photochem. Photobiol. B 180, 39–50 (2018)

    Article  Google Scholar 

  38. A.S. Adekunle, J.A.O. Oyekunle, O.S. Oluwafemi, A.O. Joshua, W.O. Makinde, A.O. Ogunfowokan, M.A. Eleruja, E.E. Ebenso, Int. J. Electrochem. Sci. 9, 3008–3021 (2014)

    Article  Google Scholar 

  39. K. Hayat, M. Gondal, M.M. Khaled, S. Ahmed, J. Molec, Catal. A Chem. 336, 64–71 (2011)

    Article  CAS  Google Scholar 

  40. P. Kaewmuang, T. Thongtem, S. Thongtem, S. Kittiwachana, S. Kaowphong, Russ. J Phys Chem A 92, 1777–1781 (2018)

    Article  Google Scholar 

  41. N. Duraisamy, K. Kandiah, R. Rajendran, S. Prabhu, R. Ramesh, G. Dhanaraj, Res. Chem Intermed 44, 5653–5667 (2018)

    Article  CAS  Google Scholar 

  42. V. Karthikeyan, A. Padmanaban, T. Dhanasekaran, S.P. Kumar, G. Gnanamoorthy, V. Narayanan, Mater. Sci. Eng. J. 9, 1–4 (2017)

  43. D. Ahirwar, M. Bano, I. Khan, M.U.-D. Sheikh, M. Thomas, F. Khan, J Mater. Sci. Mater. Electron. 29, 5768–5781 (2018)

    Article  CAS  Google Scholar 

  44. F. Motahari, M.R. Mozdianfard, F. Soofivand, M. Salavati-Niasari, Rsc Adv. 4, 27654–27660 (2014)

    Article  CAS  Google Scholar 

  45. X. Rong, F. Qiu, C. Zhang, L. Fu, Y. Wang, D. Yang, Powder Technol. 275, 322–328 (2015)

    Article  CAS  Google Scholar 

  46. E. Haque, J.W. Jun, S.H. Jhung, J Hazard Mater. 185(1), 507–511 (2011)

    Article  CAS  PubMed  Google Scholar 

  47. S. Moosavi, R.Y.M. Li, C.W. Lai, Y. Yusof, S. Gan, O. Akbarzadeh, M.R. Johan, Nanomater. 10(12), 2360 (2020)

    Article  CAS  Google Scholar 

  48. J.P. Saikia, S. Paul, B.K. Konwar, S.K. Samdarshi, Colloids Surf. B: Biointerfaces 79(2), 521–523 (2010)

    Article  CAS  PubMed  Google Scholar 

  49. S. Kawanishi, S. Inoue, S. Oikawa, N. Yamashita, S. Toyokuni, M. Kawanishi, K. Nishino, The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radical Biol. Med. 32(9), 822–832 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Akbar Jan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, S., Akbar Jan, F., Ullah, N. et al. Photocatalytic and therapeutic applications of the synthesized nickle oxide (NiO) nanoparticles. J IRAN CHEM SOC 20, 2017–2029 (2023). https://doi.org/10.1007/s13738-023-02817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02817-7

Keywords

Navigation