Skip to main content
Log in

Synthesis of new hybrid indolyl-pyridines with sulfonamide moiety in the presence of Fe3O4@SiO2@(CH2)3-urea-quinolinium trifluoroacetate via a cooperative vinylogous anomeric-based oxidation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

An efficient and simple multicomponent method for the synthesis of new indolyl-pyridines bearing sulfonamide moiety, as multi-functional heterocycles, through a condensation reaction of 3-cyanoacetyl indole, N-(4-acetylphenyl)-4-methylbenzenesulfonamide, aryl aldehyde, and ammonium acetate in the presence of Fe3O4@SiO2@(CH2)3-urea-quinolinium trifluoroacetate as a novel and recyclable nanomagnetic catalyst, under solvent-free conditions is developed. The novel catalyst was characterized using Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy equipped by energy dispersive spectroscopy, X-ray diffraction, elemental mapping analysis, transmission electron microscopy, thermo gravimetric analysis/derivative thermo gravimetric and vibrating sample magnetometer. We suggested a cooperative vinylogous anomeric-based oxidation as a mechanistic route for the last step of the described synthesis. A simple procedure, high proficiency, and recyclability of the catalyst are the most attractive features of this protocol.

Graphical abstract

Indolyl-pyridines bearing sulfonamide moiety, as a new series of multi-functional heterocycles, were synthesized via a simple and efficient multi-component method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 4
Fig. 8
Scheme 5:

Similar content being viewed by others

References

  1. S.L. Schreiber, Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. D.J. Ramon, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew. Chem. Int. Ed. 44, 1602 (2005)

    Article  CAS  Google Scholar 

  3. G. Li, H.X. Wei, S.H. Kim, M.D. Carducci, A novel electrophilic diamination reaction of alkenes. Angew. Chem. Int. Ed. 40, 4277 (2001)

    Article  CAS  Google Scholar 

  4. S. Tu, B. Jiang, Y. Zhang, R. Jia, J. Zhang, C. Yao, F. Shi, An efficient and chemoselective synthesis of N-substituted 2-aminopyridines via a microwave-assisted multicomponent reaction. Org. Biomol. Chem. 5, 355 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. A.A. Patchett, R.P. Nargund, Privileged structures-an update. Annu. Rep. Med. Chem. 35, 289 (2000)

    CAS  Google Scholar 

  6. A. Dömling, Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev. 106, 17 (2006)

    Article  PubMed  Google Scholar 

  7. S.L. Cui, X.F. Lin, Y.G. Wang, Parallel synthesis of strongly fluorescent polysubstituted 2, 6-dicyanoanilines via microwave-promoted multicomponent reaction. J. Org. Chem. 70, 2866 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Y. Huarig, F. Yang, C. Zhu, Highly enantioseletive biginelli reaction using a new chiral ytterbium catalyst: asymmetric synthesis of dihydropyrimidines. J. Am. Chem. Soc. 127, 16386 (2005)

    Article  Google Scholar 

  9. A. Dömling, I. Ugi, Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. 39, 3168 (2000)

    Article  Google Scholar 

  10. S. Hassan, T.J.J. Müller, Multicomponent syntheses based upon copper-catalyzed alkyne-azide cycloaddition. Adv. Synth. Catal. 357, 617 (2015)

    Article  CAS  Google Scholar 

  11. J.A. Wells, C.L. McClendon, Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450, 1001 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. V. Azzarito, K. Long, N.S. Murphy, A.J. Wilson, Inhibition of α-helix-mediated protein–protein interactions using designed molecules. Nat. Chem. 5, 161 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. Y. Feng, T.J. Mitchison, A. Bender, D.W. Young, J.A. Tallarico, Multi-parameter phenotypic profiling: using cellular effects to characterize small-molecule compounds. Nat. Rev. Drug. Discov. 8, 567 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. S.J. Teague, Synthesis of heavily substituted 2-aminopyridines by displacement of a 6-methylsulfinyl group. J. Org. Chem. 73, 9765 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. M. Movassaghi, M.D. Hill, O.K. Ahmad, Direct synthesis of pyridine derivatives. J. Am. Chem. Soc. 129, 10096 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. M. Zhang, M.N. Chen, Z.H. Zhang, Adv. Synth. Catal. 361, 5182 (2019)

    Article  CAS  Google Scholar 

  17. T. Šmejkal, B. Breit, A supramolecular catalyst for regioselective hydroformylation of unsaturated carboxylic acids. Angew. Chem. Int. Ed. 47, 311 (2008)

    Article  Google Scholar 

  18. D. Bora, B. Deb, A.L. Fuller, A.M.Z. Slawin, J.D. Woollins, D.K. Dutta, Dicarbonyliridium (I) complexes of pyridine ester ligands and their reactivity towards various electrophiles. Inorg. Chim. Acta 363, 1539 (2010)

    Article  CAS  Google Scholar 

  19. N. De Rycke, F. Couty, O.R.P. David, Increasing the reactivity of nitrogen catalysts. Chem. Eur. J. 17, 12852 (2011)

    Article  PubMed  Google Scholar 

  20. R. Makiura, S. Motoyama, Y. Umemura, H. Yamanaka, O. Sakata, H. Kitagawa, Surface nano-architecture of a metal-organic framework. Nat. Mater. 9, 565 (2010)

    Article  CAS  PubMed  Google Scholar 

  21. C. Allais, J.M. Grassot, J. Rodriguez, T. Constantieux, Metal-free multicomponent syntheses of pyridines. Chem. Rev. 114, 10829 (2014)

    Article  CAS  PubMed  Google Scholar 

  22. V.P. Litvinov, Multicomponent cascade heterocyclisation as a promising route to targeted synthesis of polyfunctional pyridines. Russ. Chem. Rev. 72, 69 (2003)

    Article  CAS  Google Scholar 

  23. A.M. Farghaly, N.S. Habib, M.A. Khalil, O.A. El-Sayed, Studies on reactions of cyclic oxalyl compounds with hydrazines or hydrazones. 2. Synthesis and reactions of 4-benzoyl-1-(4-nitrophenyl)-5-phenyl-1H-pyrazole-3-carboxylic acid. J. Pharm. Sci. 3, 90 (1989)

    CAS  Google Scholar 

  24. M. Shiri, M.A. Zolfigol, H.G. Kruger, Z. Tanbakouchian, Bis-and trisindolylmethanes (BIMs and TIMs). Chem. Rev. 110, 2250 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. M. Shiri, Indoles in multicomponent processes (MCPs). Chem. Rev. 112, 3508 (2012)

    Article  CAS  PubMed  Google Scholar 

  26. S. Isik, F. Kockar, M. Aydin, O. Arslan, O. OzensoyGuler, A. Innocenti, A. Scozzafava, C.T. Supuran, Carbonic anhydrase inhibitors: Inhibition of the β-class enzyme from the yeast Saccharomyces cerevisiae with sulfonamides and sulfamates. Bioorg. Med. Chem. 17, 1158 (2009)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Wan, G. Fang, H. Chen, X. Deng, Z. Tang, Sulfonamide derivatives as potential anti-cancer agents and their SARs elucidation. Eur. J. Med. Chem. 226, 113837 (2021)

    Article  CAS  PubMed  Google Scholar 

  28. A. Weber, A. Casini, A. Heine, D. Kuhn, C.T. Supuran, A. Scozzafava, G. Klebe, Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J. Med. Chem. 47, 550 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. M.M. Kamel, H.I. Ali, M.M. Anwar, N.A. Mohamed, A.M.M. Soliman, Synthesis, antitumor activity and molecular docking study of novel Sulfonamide-Schiff’s bases, thiazolidinones, benzothiazinones and their C-nucleoside derivatives. Eur. J. Med. Chem. 45, 572 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. M.M. Ghorab, F.A. Ragab, H.I. Heiba, A.A. Bayomi, Novel quinazoline derivatives bearing a sulfapyridine moiety as anticancer and radiosensitizing agents. J. Heterocycl. Chem. 51, E255 (2014)

    Article  CAS  Google Scholar 

  31. S. Riaz, I. UllahKhan, M. Bajda, M. Ashraf, Q.U. Ain, A. Shaukat, T.U. Rehman, S. Mutahir, S. Hussain, G. Mustafa, M. Yar, Pyridine sulfonamide as a small key organic molecule for the potential treatment of type-II diabetes mellitus and Alzheimer’s disease: In vitro studies against yeast α-glucosidase, acetylcholinesterase and butyrylcholinesterase. Bioorg. Chem. 63, 64 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. L. Bouissane, S.E. Kazzouli, S. Léonce, B. Pfeiffer, E.M. Rakib, M. Khouili, G. Guillaumet, Synthesis and biological evaluation of N-(7-indazolyl)benzenesulfonamide derivatives as potent cell cycle inhibitors. Bioorg. Med. Chem. 14, 1078 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. C. Camoutsis, A. Geronikaki, A. Ciric, M. Soković, P. Zoumpoulakis, M. Zervou, Sulfonamide-1,2,4-thiadiazole derivatives as antifungal and antibacterial agents: synthesis, biological evaluation, lipophilicity, and conformational studies. Chem. Pharm. Bull. 58, 160 (2010)

    Article  CAS  Google Scholar 

  34. T. Nasr, S. Bondock, S. Eid, Design, synthesis, antimicrobial evaluation and molecular docking studies of some new thiophene, pyrazole and pyridone derivatives bearing sulfisoxazole moiety. Eur. J. Med. Chem. 84, 491 (2014)

    Article  CAS  PubMed  Google Scholar 

  35. A.K. Gadad, C.S. Mahajanshetti, S. Nimbalkar, A. Raichurkar, Synthesis and antibacterial activity of some 5-guanylhydrazone/thiocyanato-6-arylimidazo [2,1-b]-1,3,4-thiadiazole-2-sulfonamide derivatives. Eur. J. Med. Chem. 35, 853 (2000)

    Article  CAS  PubMed  Google Scholar 

  36. Y.J. Wu, Berlin, Heidelberg 2010, 26.

  37. F.K. Esfahani, D. Zareyee, R. Yousefi, Sulfonated core-shell magnetic nanoparticle (Fe3O4@SiO2@PrSO3H) as a highly active and durable protonic acid catalyst; synthesis of coumarin derivatives through Pechmann reaction. ChemCatChem 6, 3333 (2014)

    Article  CAS  Google Scholar 

  38. F. Nemati, M.M. Heravi, R. Saeedi Rad, Nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for highly efficient Knoevenagel condensation and Michael addition reactions of aromatic aldehydes with 1,3-cyclic diketones. Chin. J. Catal. 33, 1825 (2012)

    Article  CAS  Google Scholar 

  39. M. Haghighat, F. Shirini, M. Golshekan, Efficiency of NaHSO4 modified periodic mesoporous organosilica magnetic nanoparticles as a new magnetically separable nanocatalyst in the synthesis of [1, 2, 4] triazolo quinazolinone/pyrimidine derivatives. J. Mol. Struct. 1171, 168 (2018)

    Article  CAS  Google Scholar 

  40. A.R. Karimi, Z. Eftekhari, M. Karimi, Z. Dalirnasab, Alkanedisulfamic acid functionalized silica-coated magnetic nanoparticles: preparation and catalytic investigation in synthesis of mono-, bis-and tris [bis (4-hydroxycoumarinyl) methanes]. Synthesis 46, 3180 (2014)

    Article  CAS  Google Scholar 

  41. H. Naeimi, S. Mohamadabadi, Sulfonic acid-functionalized silica-coated magnetic nanoparticles as an efficient reusable catalyst for the synthesis of 1-substituted 1 H-tetrazoles under solvent-free conditions. Dalt. Trans. 43, 12967 (2014)

    Article  CAS  Google Scholar 

  42. L. Ghandi, M.K. Miraki, I. Radfar, E. Yazdani, A. Heydari, Formamidinesulfinic acid-functionalized Fe3O4@SiO2 as a green and magnetic recyclable catalyst for synthesis of pyrano[2, 3-d] pyrimidinone derivatives. ChemistrySelect 3, 1787 (2018)

    Article  CAS  Google Scholar 

  43. M.A.E.A. Ali, H.A. Hamad, Synthesis and characterization of highly stable superparamagnetic CoFe2O4 nanoparticles as a catalyst for novel synthesis of thiazolo [4, 5-b] quinolin-9-one derivatives in aqueous medium. J. Mol. Catal. A Chem. 404–405, 148 (2015)

    Article  Google Scholar 

  44. H. Veisi, P. Mohammadi, J. Gholami, Sulfamic acid heterogenized on functionalized magnetic Fe3O4 nanoparticles with diaminoglyoxime as a green, efficient and reusable catalyst for one-pot synthesis of substituted pyrroles in aque ous phase. Appl. Organomet. Chem. 28, 868 (2014)

    Article  CAS  Google Scholar 

  45. R. Ghorbani-Vaghei, N. Sarmast, Green synthesis of new pyrimido [4, 5-d] pyrimidine derivatives using 7-aminonaphthalene-1, 3-disulfonic acid-functionalized magnetic Fe3O4@ SiO2 nanoparticles as catalyst. Appl. Organomet. Chem. 32, e4003 (2018)

    Article  Google Scholar 

  46. H. Veisi, S. Taheri, S. Hemmati, Preparation of polydopamine sulfamic acid-functionalized magnetic Fe3O4 nanoparticles with a core/shell nanostructure as heterogeneous and recyclable nanocatalysts for the acetylation of alcohols, phenols, amines and thiols under solvent-free conditions. Green Chem. 18, 6337 (2016)

    Article  CAS  Google Scholar 

  47. S. Mirfakhraei, M. Hekmati, F.H. Eshbala, H. Veisi, Fe3O4/PEG-SO3H as a heterogeneous and magnetically-recyclable nanocatalyst for the oxidation of sulfides to sulfones or sulfoxides. New J. Chem. 42, 1757 (2018)

    Article  CAS  Google Scholar 

  48. F. Bonyasi, M. Hekmati, H. Veisi, Preparation of core/shell nanostructure Fe3O4@ PEG400-SO3H as heterogeneous and magnetically recyclable nanocatalyst for one-pot synthesis of substituted pyrroles by Paal–Knorr reaction at room temperature. J. Colloid Interface Sci. 496, 177 (2017)

    Article  CAS  PubMed  Google Scholar 

  49. A. Maleki, Z. Hajizadeh, R. Firouzi-Haji, Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Microporous Mesoporous Mater. 259, 46 (2018)

    Article  CAS  Google Scholar 

  50. A. Maleki, T. Kari, Novel leaking-free, green, double core/shell, palladium-loaded magnetic heterogeneous nanocatalyst for selective aerobic oxidation. Catal. Lett. 148, 2929 (2018)

    Article  CAS  Google Scholar 

  51. A. Maleki, R. Rahimi, S. Maleki, Efficient oxidation and epoxidation using a chromium (VI)-based magnetic nanocomposite. Environ. Chem. Lett. 14, 195 (2016)

    Article  CAS  Google Scholar 

  52. M. Sheykhan, L. Ma’mani, A. Ebrahimi, A. Heydari, Sulfamic acid heterogenized on hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles as a magnetic green interphase catalyst. J. Mol. Catal. A Chem. 335, 253 (2011)

    Article  CAS  Google Scholar 

  53. A.R. Kiasat, S. Nazari, β-Cyclodextrin conjugated magnetic nanoparticles as a novel magnetic microvessel and phase transfer catalyst: synthesis and applications in nucleophilic substitution reaction of benzyl halides. J. Incl. Phenom. Macrocycl. Chem. 76, 363 (2013)

    Article  CAS  Google Scholar 

  54. A. Pfeifer, K. Zimmermann, C. Plank, Magnetic nanoparticles for biomedical applications. Pharm. Res. 29, 1161 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. M.Z. Kassaee, H. Masrouri, F. Movahedi, ZnO-nanoparticle-promoted synthesis of polyhydroquinoline derivatives via multicomponent Hantzsch reaction. Monatsh. Chem. 141, 317 (2010)

    Article  CAS  Google Scholar 

  56. P. Li, L. Wang, L. Zhang, G.W. Wang, Magnetic nanoparticles-supported palladium: a highly efficient and reusable catalyst for the Suzuki, Sonogashira, and Heck reactions. Adv. Synth. Catal. 354, 1307 (2012)

    Article  CAS  Google Scholar 

  57. B. Atashkar, M.A. Zolfigol, S. Mallakpour, Applications of biological urea-based catalysts in chemical processes. Mol. Catal. 452, 192 (2018)

    Article  CAS  Google Scholar 

  58. B. Zhao, Y. Liu, Step-economical C–H activation reactions directed by in situ amidation. Synthesis 52, 3211 (2020)

    Article  CAS  Google Scholar 

  59. M. Yarie, Catalytic anomeric based oxidation. Iran. J. Catal. 7, 85 (2017)

    CAS  Google Scholar 

  60. M. Yarie, Spotlight: catalytic vinylogous anomeric based oxidation (Part I). Iran. J. Catal. 10, 79 (2020)

    CAS  Google Scholar 

  61. I.V. Alabugin, L. Kuhn, M.G. Medvedev, N.V. Krivoshchapov, V.A. Vil, I.A. Yaremenko, P. Mehaffy, M. Yarie, A.O. Terent’ev, M.A. Zolfigol, Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone. Chem. Soc. Rev. 50, 10253 (2021)

    Article  CAS  PubMed  Google Scholar 

  62. I.V. Alabugin, L. Kuhn, N.V. Krivoshchapov, P. Mehaffy, M.G. Medvedev, Anomeric effect, hyperconjugation and electrostatics: lessons from complexity in a classic stereoelectronic phenomenon. Chem. Soc. Rev. 50, 10212 (2021)

    Article  CAS  PubMed  Google Scholar 

  63. M. Dashteh, M.A. Zolfigol, A. Khazaei, S. Baghery, M. Yarie, S. Makhdoomi, M. Safaiee, Synthesis of cobalt tetra-2, 3-pyridiniumporphyrazinato with sulfonic acid tags as an efficient catalyst and its application for the synthesis of bicyclic ortho-aminocarbonitriles, cyclohexa-1, 3-dienamines and 2-amino-3-cyanopyridines. RSC Adv. 10, 27824 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. N. Zarei, M. Torabi, M. Yarie, M.A. Zolfigol, Novel urea-functionalized magnetic nanoparticles as a heterogeneous hydrogen bonding catalyst for the synthesis of new 2-hydroxy pyridines. Polycycl. Aromat. Compd (2022). https://doi.org/10.1080/10406638.2022.2061531

    Article  Google Scholar 

  65. S. Kalhor, M. Yarie, M. Torabi, M.A. Zolfigol, M. Rezaeivala, Y. Gu, Synthesis of 2-amino-6-(1 H-indol-3-yl)-4-phenylnicotinonitriles and bis (indolyl) pyridines using a novel acidic nanomagnetic catalyst via a cooperative vinylogous anomeric-based oxidation mechanism. Polycyclic Aromat. Compd. 42, 4270 (2022)

    Article  CAS  Google Scholar 

  66. M. Torabi, M. Yarie, M.A. Zolfigol, S. Azizian, Y. Gu, A magnetic porous organic polymer: catalytic application in the synthesis of hybrid pyridines with indole, triazole and sulfonamide moieties. RSC Adv. 12, 8804 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. M.R. Anizadeh, M. Torabi, M.A. Zolfigol, M. Yarie, Catalytic application Fe3O4@ SiO2@(CH2)3-urea-dithiocarbamic acid for the synthesis of triazole-linked pyridone derivatives. J. Mol. Struct. 1277, 134885 (2023)

    Article  CAS  Google Scholar 

  68. M. Torabi, M. Yarie, M.A. Zolfigol, S. Rouhani, S. Azizi, T.O. Olomola, M. Maaza, T.A. Msagati, Synthesis of new pyridines with sulfonamide moiety via a cooperative vinylogous anomeric-based oxidation mechanism in the presence of a novel quinoline-based dendrimer-like ionic liquid. RSC Adv. 11, 3143 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. F. Karimi, M. Yarie, M.A. Zolfigol, Synthesis and characterization of Fe3O4@SiO2@(CH2) 3NH(CH2)2O2P(OH)2 and its catalytic application in the synthesis of benzo-[h]quinoline-4-carboxylic acids via a cooperative anomeric based oxidation mechanism. Mol. Catal. 489, 110924 (2020)

    Article  CAS  Google Scholar 

  70. M. Torabi, M. Yarie, F. Karimi, M.A. Zolfigol, Catalytic synthesis of coumarin-linked nicotinonitrile derivatives via a cooperative vinylogous anomeric-based oxidation. Res. Chem. Intermed. 46, 5361 (2020)

    Article  CAS  Google Scholar 

  71. P. Ghasemi, M. Yarie, M.A. Zolfigol, A.A. Taherpour, M. Torabi, Ionically tagged magnetic nanoparticles with urea linkers: application for preparation of 2-aryl-quinoline-4-carboxylic acids via an anomeric-based oxidation mechanism. ACS Omega 5, 3207 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. M. Torabi, M.A. Zolfigol, M. Yarie, B. Notash, S. Azizian, M.M. Azandaryani, Synthesis of triarylpyridines with sulfonate and sulfonamide moieties via a cooperative vinylogous anomeric-based oxidation. Sci. Rep. 11, 1 (2021)

    Article  Google Scholar 

  73. M.R. Anizadeh, M.A. Zolfigol, M. Torabi, M. Yarie, B. Notash, Urea-dithiocarbamic acid functionalized magnetic nanoparticles modified with Ch-Cl: catalytic application for the synthesis of novel hybrid pyridones via cooperative geminal-vinylogous anomeric-based oxidation. J. Mol. Liq. 364, 120016 (2022)

    Article  CAS  Google Scholar 

  74. M. Torabi, M.A. Zolfigol, M. Yarie, Y. Gu, Application of ammonium acetate as a dual rule reagent-catalyst in synthesis of new symmetrical terpyridines. Mol. Catal. 516, 111959 (2021)

    Article  CAS  Google Scholar 

  75. M. Torabi, M. Yarie, S. Baghery, M.A. Zolfigol, Recent advances in catalytic synthesis of pyridine derivatives (Elsevier Inc., 2023), pp.503–580

    Google Scholar 

  76. A.M. Tavassoli, M.A. Zolfigol, M. Yarie, Application of new multi-H-bond catalyst for the preparation of substituted pyridines via a cooperative vinylogous anomeric-based oxidation. Res. Chem. Intermed. 49, 679 (2022)

    Article  Google Scholar 

  77. H. Saffarian, F. Karimi, M. Yarie, M.A. Zolfigol, Fe3O4@SiO2@(CH2)3-urea-quinoline sulfonic acid chloride: a novel catalyst for the synthesis of coumarin containing 1,4 dihydropyridines. J. Mol. Struct. 1224, 129294 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Bu-Ali Sina University and Iran National Science Foundation (INSF), for financial support (Grant Number: 98001912).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Zolfigol.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, F., Torabi, M., Yarie, M. et al. Synthesis of new hybrid indolyl-pyridines with sulfonamide moiety in the presence of Fe3O4@SiO2@(CH2)3-urea-quinolinium trifluoroacetate via a cooperative vinylogous anomeric-based oxidation. J IRAN CHEM SOC 20, 2189–2202 (2023). https://doi.org/10.1007/s13738-023-02794-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02794-x

Keywords

Navigation