Skip to main content

Advertisement

Log in

Novel indolotacrine hybrids as acetylcholinesterase inhibitors: design, synthesis, biological evaluation, and molecular docking studies

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A new class of indolotacrine hybrids including cyclopenta- and cyclohexa-indolotacrine derivatives was designed, synthesized, and assessed as acetylcholinesterase inhibitors (AChEIs). Some of the designed derivatives indicated a good inhibitory effect against acetylcholinesterase (AChE). Among them, cyclopenta-indolotacrine hybrids showed a slightly better anti-AChE activity than cyclohexa-indolotacrine hybrids. Compound 5-amino-4-(4-chlorophenyl)-2-(1H-indol-3-yl)-4,6,7,8-tetrahydrocyclopenta[b]pyrano[3,2-e]pyridine-3-carbonitrile (8g) including 4-chlorophenyl and cyclopentane ring showed the best AChE inhibitory activity with IC50 value of 0.4 µM. The kinetic study indicated that compound 8g acted as a competitive inhibitor. Based on molecular docking results, it occupied both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of AChE. Using a neuroprotective assay against H2O2-induced cell death in PC12 neurons, only compound 8b with 4-methoxyphenyl moiety and cyclopentane ring illustrated significant protection (P < 0.0001) at a concentration of 100 μM compared to quercetin at a concentration of 10 μM (P < 0.0001). In silico ADME studies estimated good drug-likeness for the designed compounds. As a result, these indolotacrine hybrids can be a very encouraging AChE inhibitor to treat Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the results of this research are accessible in the supplementary material of this article.

References

  1. H. Hampel, M.-M. Mesulam, A.C. Cuello, M.R. Farlow, E. Giacobini, G.T. Grossberg, A.S. Khachaturian, A. Vergallo, E. Cavedo, P.J. Snyder, Brain 1, 1917 (2018)

    Article  Google Scholar 

  2. C. Bellenguez, B. Grenier-Boley, J.-C. Lambert, Curr. Opin. Neurobiol. 61, 40 (2020)

    Article  CAS  PubMed  Google Scholar 

  3. J.W. Kinney, S.M. Bemiller, A.S. Murtishaw, A.M. Leisgang, A.M. Salazar, B.T. Lamb, Alzheimer’s Dement. Transl. Res. Clin. Interv. 4, 575 (2018)

    Article  Google Scholar 

  4. M. Padurariu, A. Ciobica, R. Lefter, I. Lacramioara Serban, C. Stefanescu, R. Chirita, Psychiatr. Danub. 25, 0 (2013)

    CAS  Google Scholar 

  5. A. Rabbito, M. Dulewicz, A. Kulczyńska-Przybik, B. Mroczko, Int. J. Mol. Sci. 21, 1989 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. P.T. Francis, A.M. Palmer, M. Snape, G.K. Wilcock, J. Neurol. Neurosurg. Psychiatr. 66, 137 (1999)

    Article  CAS  Google Scholar 

  7. J. Sussman, M. Harel, I. Silman, Chemico-Biol. Interact. 87, 187 (1993)

    Article  CAS  Google Scholar 

  8. K.G. Yiannopoulou, S.G. Papageorgiou, J. Cent. Nerv. Syst. Dis. 12, 1179573520907397 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  9. P.B. Watkins, H.J. Zimmerman, M.J. Knapp, S.I. Gracon, K.W. Lewis, JAMA 271, 992 (1994)

    Article  CAS  PubMed  Google Scholar 

  10. M. Singh, M. Kaur, N. Chadha, O. Silakari, Mol. Divers. 20, 271 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. M. Bartolini, J. Marco-Contelles, Chem. Rec. 19, 927 (2019)

    Article  CAS  PubMed  Google Scholar 

  12. C. de los Ríos, J. Marco-Contelles, Eur. J. Med. Chem. 166, 381 (2019)

    Article  Google Scholar 

  13. M. Chioua, E. Buzzi, I. Moraleda, I. Iriepa, M. Maj, A. Wnorowski, C. Giovannini, A. Tramarin, F. Portali, L. Ismaili, P. López-Alvarado, M.L. Bolognesi, K. Jóźwiak, J.C. Menéndez, J. Marco-Contelles, M. Bartolini, Eur. J. Med. Chem. 155, 839 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. S. Babaee, G. Chehardoli, T. Akbarzadeh, M.A. Zolfigol, M. Mahdavi, A. Rastegari, F. Homayouni Moghadam, Z. Najafi, Chem. Biodivers. 18, e2000924 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. J.L. Marco, C. de los Rı́os, M.A.C. Carreiras, J.E. Baños, A. Badı́a, N.M. Vivas, Bioorg. Med. Chem. 9, 727. (2001)

  16. J. Jampilek, Molecules 24, 3839 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Kumar, Future J. Pharm. Sci. 6, 1 (2020)

    Article  CAS  Google Scholar 

  18. O. Benek, O. Soukup, M. Pasdiorova, L. Hroch, V. Sepsova, P. Jost, M. Hrabinova, D. Jun, K. Kuca, D. Zala, R.R. Ramsay, J. Marco-Contelles, K. Musilek, ChemMedChem 11, 1264 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. M. Bingül, J. Chem. Res. 43, 399 (2019)

    Article  Google Scholar 

  20. M. Bingul, S. Ercan, M. Boga, J. Mol. Struct. 1213, 128202 (2020)

    Article  CAS  Google Scholar 

  21. T. Prochnow, A. Maroneze, D.F. Back, N.S. Jardim, C.W. Nogueira, G. Zeni, Org. Biomol. Chem. 16, 7926 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. G. Chehardoli, A. Bahmani, Mol. Divers. 25, 535 (2021)

    Article  CAS  PubMed  Google Scholar 

  23. Z. Najafi, M. Mahdavi, M. Saeedi, E. Karimpour-Razkenari, N. Edraki, M. Sharifzadeh, M. Khanavi, T. Akbarzadeh, Bioorg. Chem. 83, 303 (2019)

    Article  CAS  PubMed  Google Scholar 

  24. G. Chehardoli, A. Bahmani, Avicenna J. Pharm. Res. 1, 46 (2020)

    Article  Google Scholar 

  25. P.S. Bhale, B.P. Bandgar, S.B. Dongare, S.N. Shringare, D.M. Sirsat, H.V. Chavan, Phosphorus Sulfur Silicon Relat. Elem. (2019).

  26. J. Wang, H. Liu, R. Wen, Z. Zhu, J. Li, S. Zhu, Res. Chem. Intermed. 43, 4575 (2017)

    Article  CAS  Google Scholar 

  27. J. Marco, Bioorg. Med. Chem. 9, 727 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, J. Comput. Chem. 30, 2785 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Daina, O. Michielin, V. Zoete, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  30. H. Liu, L. Wang, M. Lv, R. Pei, P. Li, Z. Pei, Y. Wang, W. Su, X.-Q. Xie, J. Chem. Inf. Model. 54, 1050 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. P. Banerjee, A. Eckert, Nucleic Acids Res. 46, W257 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Vice chancellor for Research and Technology of Hamadan University of Medical Sciences with project No. 9605103032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Najafi.

Ethics declarations

Conflict of interest

Zahra Najafi et al. declare that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4878 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaee, S., Zolfigol, M.A., Chehardoli, G. et al. Novel indolotacrine hybrids as acetylcholinesterase inhibitors: design, synthesis, biological evaluation, and molecular docking studies. J IRAN CHEM SOC 20, 1049–1060 (2023). https://doi.org/10.1007/s13738-022-02726-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02726-1

Keywords

Navigation