Skip to main content

Advertisement

Log in

Structure–activity relationship investigation of coumarin–chalcone hybrids with diverse side-chains as acetylcholinesterase and butyrylcholinesterase inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Chalcones containing tertiary amine side-chains have potent activity as acetylcholinesterase (AChE) inhibitors. However, the effects of the location of the tertiary amine groups as well as of other groups on AChE and butyrylcholinesterase (BChE) activity have not been reported. Here, we report the synthesis and testing of 36 new coumarin–chalcone hybrids (5d7j, 9d11f, 12k13m) against AChE and BChE. The nature and position of the chalcone substituents had major effects on inhibitory activity as well as selectivity for AChE over BChE. Compounds with para-substituted chalcone fragments in which the substituents were choline-like had potent activity against AChE and poor activity against BChE, while ortho-substituted analogs exhibited an opposite effect. Replacement of the terminal amine groups by amide, alkyl or alkenyl groups abrogated activity. Compound 5e showed potent inhibitory activity \((\hbox {IC}_{50} = 0.15 \pm 0.01\, \upmu \hbox {mol}{/}\hbox {L}\)) and good selectivity for AChE over BChE (ratio 27.4), and a kinetic study showed that 5e exhibited mixed-type inhibition against AChE. Computational docking results indicate that 5e binds to Trp 279, Tyr334 and Trp 84 in AChE, but only to Trp 82 in BChE. Overall, the results show that coumarin–chalcone hybrids with choline-like side-chains have promising activity and selectivity against AChE and be promising therapeutic leads for Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Association A (2017) Alzheimer’s disease facts and figures. Alzheimer’s Dement 13:325–373. https://doi.org/10.1016/j.jalz.2017.02.001

    Article  Google Scholar 

  2. Dey A, Bhattacharya R, Mukherjee A, Pandey DK (2016) Natural products against Alzheimer’s disease: pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 35:178–216. https://doi.org/10.1016/j.biotechadv.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  3. Blanco-Silvente L, Castells X, Saez M, Barceló MA, GarreOlmo J, Vilalta-Franch J, Capellà D (2017) Discontinuation, efficacy, and safety of cholinesterase inhibitors for Alzheimer’s disease: a meta-analysis and meta-regression of 43 randomized clinical trials enrolling 16106 patients. Int J Neuropsychoph 20:519–528. https://doi.org/10.1093/ijnp/pyx012

    Article  CAS  Google Scholar 

  4. Gurbuz AS, Ozturk S, Acar E, Cagan Efe S, Akgun T, Kilicgedik A, Guler A, Kirma C (2016) Acquired long QT syndrome and Torsades de Pointes related to donepezil use in a patient with Alzheimer disease. Egypt Heart J 68:197–199. https://doi.org/10.1016/j.ehj.2015.07.004

    Article  Google Scholar 

  5. Isik AT, Soysal P, Yay A (2014) Which rivastigmine formula is better for heart in elderly patients with Alzheimer’s disease: oral or patch? Am J Alzheimers Dis Other Demen 29:735–738. https://doi.org/10.1177/1533317514536598

    Article  PubMed  Google Scholar 

  6. Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14:289–300. https://doi.org/10.1016/j.phymed.2007.02.002

    Article  CAS  PubMed  Google Scholar 

  7. Li RS, Wang XB, Hu XJ, Kong LY (2013) Design, synthesis and evaluation of flavonoid derivatives as potential multifunctional acetylcholinesterase inhibitors against Alzheimer’s disease. Bioorg Med Chem Lett 23:2636–2641. https://doi.org/10.1016/j.bmcl.2013.02.095

    Article  CAS  PubMed  Google Scholar 

  8. Asadipour A, Alipour M, Jafari M, Khoobi M, Emami S, Nadri H, Sakhteman A, Moradi A, Sheibani V, Moghadam FH, Shafiee A, Foroumadi A (2013) Novel coumarin-3-carboxamides bearing N-benzylpiperidine moiety as potent acetylcholinesterase inhibitors. Eur J Med Chem 70:623–630. https://doi.org/10.1016/j.ejmech.2013.10.024

    Article  CAS  PubMed  Google Scholar 

  9. Silva T, Reis J, Teixeira J, Borges F (2014) Alzheimer’s disease, enzyme targets and drug discovery struggles: from natural products to drug prototypes. Ageing Res Rev 15:116–145. https://doi.org/10.1016/j.arr.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  10. Gomes MN, Muratov EN, Pereira M, Peixoto JC, Rosseto LP, Cravo PVL, Andrade CH, Neves BJ (2017) Chalcone derivatives: promising starting points for drug design. Molecules 22:1210. https://doi.org/10.3390/molecules22081210

    Article  CAS  PubMed Central  Google Scholar 

  11. Jeong HJ, Lee CS, Choi JG, Hong YD, Shin SS, Park JS, Lee JH, Lee S, Yoon KD, Ko JY (2015) Flavokawains B and C, melanogenesis inhibitors, isolated from the root of Piper methysticum and synthesis of analogs. Bioorg Med Chem Lett 25:799–802. https://doi.org/10.1016/j.bmcl.2014.12.082

    Article  CAS  PubMed  Google Scholar 

  12. Liu HR, Huang XQ, Lou DH, Liu XJ, Liu WK, Wang QA (2014) Synthesis and acetylcholinesterase inhibitory activity of Mannich base derivatives flavokawain B. Bioorg Med Chem Lett 24:4749–4753. https://doi.org/10.1016/j.bmcl.2014.07.087

    Article  CAS  PubMed  Google Scholar 

  13. Liu HR, Liu XJ, Fan HQ, Tang JJ, Gao XH, Liu WK (2014) Design, synthesis and pharmacological evaluation of chalcone derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem 22:6124–6133. https://doi.org/10.1016/j.bmc.2014.08.033

    Article  CAS  PubMed  Google Scholar 

  14. Liu HR, Zhou C, Fan HQ, Tang JJ, Liu LB, Gao XH, Wang QA, Liu WK (2015) Novel potent and selective acetylcholinesterase inhibitors as potential drugs for the treatment of Alzheimer’s disease: synthesis, pharmacological evaluation, and molecular modeling of amino-alkyl-substituted fluoro-chalcones derivatives. Chem Biol Drug Des 86:517–522. https://doi.org/10.1111/cbdd.12514

    Article  CAS  PubMed  Google Scholar 

  15. Liu HR, Fan HQ, Gao XH, Huang XQ, Liu XJ, Liu LB, Zhou C, Tang JJ, Wang QA, Liu WK (2016) Design, synthesis and preliminary structure-activity relationship investigation of nitrogen-containing chalcone derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors: a further study based on Flavokawain B Mannich base derivatives. J Enzyme Inhib Med Chem 31:580–589. https://doi.org/10.3109/14756366.2015.1050009

    Article  CAS  PubMed  Google Scholar 

  16. Gao XH, Zhou C, Liu HR, Liu LB, Tang JJ, Xia XH (2017) Tertiary amine derivatives of chlorochalcone as acetylcholinesterase (AChE) and buthylcholinesterase (BChE) inhibitors: the influence of chlorine, alkyl amine side chain and \(\alpha \), \(\beta \)-unsaturated ketone group. J Enzyme Inhib Med Chem 32:146–152. https://doi.org/10.1080/14756366.2016.1243534

    Article  CAS  PubMed  Google Scholar 

  17. Popov Aleksandrov A, Mirkov I, Ninkov M, Mileusnic D, Demenesku J, Subota V, Kataranovski D, Kataranovski M (2018) Effects of warfarin on biological processes other than haemostasis: a review. Food Chem Toxicol 113:19–32. https://doi.org/10.1016/j.fct.2018.01.019

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Wang YW, Li PF, Tang YB, Fawcett JP, Gu JK (2007) Quantitation of Armillarisin A in human plasma by liquid chromatography–electrospray tandem mass spectrometry. J Pharma Biomed Anal 43:1860–1863. https://doi.org/10.1016/j.jpba.2006.12.023

    Article  CAS  Google Scholar 

  19. Revankar HM, Bukhari SNA, Kumar GB, Qin HL (2017) Coumarins scaffolds as COX inhibitors. Bioorg Chem 71:146–159. https://doi.org/10.1016/j.bioorg.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  20. Anand P, Singh B, Singh N (2012) A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 20:1175–1180. https://doi.org/10.1016/j.bmc.2011.12.042

    Article  CAS  PubMed  Google Scholar 

  21. Yamaguchi Y, Nishizono N, Kobayashi D, Yoshimura T, Wada K, Oda K (2017) Evaluation of synthesized coumarin derivatives on aromatase inhibitory activity. Bioorg Med Chem Lett 27:2645–2649. https://doi.org/10.1016/j.bmcl.2017.01.062

    Article  CAS  PubMed  Google Scholar 

  22. Abdizadeh T, Kalani MR, Abnous K, Tayarani-Najaran Z, Khashyarmanesh BZ, Abdizadeh R, Ghodsi R, Hadizadeh F (2017) Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem 132:42–62. https://doi.org/10.1016/j.ejmech.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  23. Shen FQ, Wang ZC, Wu SY, Ren SZ, Man RJ, Wang BZ, Zhu HL (2017) Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX. Bioorg Med Chem Lett 27:3653–3660. https://doi.org/10.1016/j.bmcl.2017.07.020

    Article  CAS  PubMed  Google Scholar 

  24. Yang HL, Cai P, Liu QH, Yang XL, Li F, Wang J, Wu JJ, Wang XB, Kong LY (2017) Design, synthesis and evaluation of coumarin-pargyline hybrids as novel dual inhibitors of monoamine oxidases and amyloid-\(\beta \) aggregation for the treatment of Alzheimer’s disease.European. J Med Chem 138:715–728. https://doi.org/10.1016/j.ejmech.2017.07.008

    Article  CAS  Google Scholar 

  25. Pingaew R, Saekee A, Mandi P, Nantasenamat C, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2014) Synthesis, biological evaluation and molecular docking of novel chalcone–coumarin hybrids as anticancer and antimalarial agents. Eur J Med Chem 85:65–76. https://doi.org/10.1016/j.ejmech.2014.07.087

    Article  CAS  PubMed  Google Scholar 

  26. Patil RB, Sawant SD (2015) Synthesis, characterization, molecular docking and evaluation of antimicrobial and antiproliferative properties of 3-substituted chromen-2-one derivatives. Der Pharma Chemica 7:26–37. http://www.derpharmachemica.com/pharma-chemica/synthesis-characterization-molecular-docking-and-evaluation-of-antimicrobial-and-antiproliferative-properties-of-3substi.pdf

  27. Moodley T, Momin M, Mocktar C, Kannigadu C, Koorbanally NA (2016) The synthesis, structural elucidation and antimicrobial activity of 2- and 4-substituted-coumarinyl chalconess. Magn Reson Chem 54:610–617. https://doi.org/10.1002/mrc.4414

    Article  CAS  PubMed  Google Scholar 

  28. Liu HR, Liu LB, Gao XH, Liu YZ, Xu WJ, He W, Jiang H, Tang JJ, Fan HQ, Xia XH (2016) Novel ferulic amide derivatives with tertiary amine side chain as acetylcholinesterase and butyrylcholinesterase inhibitors: the influence of carbon spacer length, alkylamine and aromatic group. Eur J Med Chem 126:810–822. https://doi.org/10.1016/j.ejmech.2016.12.003

    Article  CAS  PubMed  Google Scholar 

  29. Ji QG, Yang D, Wang X, Chen CY, Deng Q, Ge ZQ, Yuan LJ, Yang XL, Liao F (2014) Design, synthesis and evaluation of novel quinazoline-2,4-dione derivatives as chitin synthase inhibitors and antifungal agents. Bioorg Med Chem 22:3405–3413. https://doi.org/10.1016/j.bmc.2014.04.042

    Article  CAS  PubMed  Google Scholar 

  30. Ellman GL, Courtney KD, Andres VJ, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  PubMed  Google Scholar 

  31. Skrzypek A, Matysiak J, Niewiadomy A, Bajda M, Szymański P (2013) Synthesis and biological evaluation of 1,3,4-thiadiazole analogues as novel AchE and BChE inhibitors. Eur J Med Chem 62:311–319. https://doi.org/10.1016/j.ejmech.2012.12.060

    Article  CAS  Google Scholar 

  32. Luo ZH, Sheng JF, Sun Y, Lu CJ, Yan J, Liu AQ, Luo HB, Huang L, Li XS (2013) Synthesis and evaluation of multi-target-directed ligands against Alzheimer’s disease based on the fusion of donepezil and ebselen. J Med Chem. 56:9089–9099. https://doi.org/10.1021/jm401047q

    Article  CAS  PubMed  Google Scholar 

  33. Alpan AS, Parlar S, Carlino L, Tarikogullari AH, Alptüzün V, Günesa HS (2013) Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem 21:4928–4937. https://doi.org/10.1016/j.bmc.2013.06.065

    Article  CAS  PubMed  Google Scholar 

  34. Kryger G, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure 7:297–307. https://doi.org/10.1016/S0969-2126(99)80040-9

    Article  CAS  PubMed  Google Scholar 

  35. Sheng R, Lin X, Li J, Jiang Y, Shang Z, Hu Y (2005) Design, synthesis, and evaluation of 2-phenoxy-indan-1-one derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem Lett 15:3834–3837. https://doi.org/10.1016/j.bmcl.2005.05.132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural science foundation of Hu’nan Province” (Grants Nos. 2017JJ2050, 2018JJ3572) and in part by the United States Public Health Service (NIH Grant GM065307).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao-Ran Liu or Jian-Ye Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 15240 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, L., Gao, XH., Liu, HR. et al. Structure–activity relationship investigation of coumarin–chalcone hybrids with diverse side-chains as acetylcholinesterase and butyrylcholinesterase inhibitors. Mol Divers 22, 893–906 (2018). https://doi.org/10.1007/s11030-018-9839-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9839-y

Keywords

Navigation