Skip to main content
Log in

Homogenous dispersive solid phase extraction combined with ionic liquid based-dispersive liquid–liquid microextraction of gentamicin and streptomycin from milk prior to HPLC-MS/MS analysis

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A salt-induced homogenous dispersive solid phase extraction method combined with an ionic liquid based-dispersive liquid–liquid microextraction was developed for the extraction of two aminoglycoside antibiotics (gentamicin and streptomycin) form milk samples prior to their determination by high performance liquid chromatography-tandem mass spectrometry. For this purpose, 15 mL milk sample mixed with 300 mg trichloroacetic acid to precipitate the sample proteins. After vortexing (1 min) and centrifugation (for 3 min at 5000 rpm), the supernatant was transferred into another test tube. After adjusting the solution pH at 10, polyvinylpyrrolidone (75 mg) was dissolved in it. The homogenous phase was broken by adding sodium chloride (20%, w/v) and polyvinylpyrrolidone was precipitated as fine particles which acted as a sorbent. After centrifugation, the supernatant phase was discarded and the analytes were eluted from the sorbent surface using 1.25 mL methanol. Subsequently, methanol was mixed with 85 µL trihexyl(tetradecyl)phosphonium chloride and the mixture was quickly injected into sodium chloride solution (10%, w/v). After a few seconds, the extraction solvent collected on the top of the solution was used in determination of the analytes. Under optimal conditions calibration curves of the analytes were linear in the range of 1–500 ng mL−1. Also, limits of detection and quantification were 0.29 and 0.18 ng mL−1; and 1.0 and 0.61 ng mL−1 for gentamicin and streptomycin, respectively. The extraction recoveries were 87 and 93% for gentamicin and streptomycin, respectively. Acceptable relative standard deviations ≤ 6.1% were also obtained. At last, the studied antibiotics were successfully determined in milk samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SI-HDSP:

Salt-induced-homogenous dispersive solid phase extraction

MS:

Mass spectrometer

PVP:

Polyvinylpyrrolidone

ER:

Enrichment factor

HPLC:

High performance liquid chromatography

LOD:

Limit of detection

LOQ:

Limit of quantification

IL:

Ionic liquids

References

  1. J. Otte, U. Pica-Ciamarra, S. Morzaria, Front. Vet. Sci. 6, 37 (2019)

    Article  Google Scholar 

  2. D. Schar, A. Sommanustweechai, R. Laxminarayan, V. Tangcharoensathien, PLoS Med. 15, e1002521 (2018)

    Article  Google Scholar 

  3. M. Mahmudul Hassan, M.E. El Zowalaty, A. Lundkvist, J.D. Arhult, M.R. Khan Nayem, Trends Food Sci. Technol. 111, 141 (2021)

    Article  Google Scholar 

  4. H. Yang, L. Paruch, X. Chen, A. Eerde, H. Skomedal, Y. Wang, D. Liu, J.L. Clarke, Front Vet Sci. 6, 136 (2019)

    Article  Google Scholar 

  5. B.K. Bansal, N.S. Bajwa, S.S. Randhawa, R. Ranjan, P.S. Dhaliwal, Trop. Anim. Health Prod. 43, 323 (2011)

    Article  Google Scholar 

  6. G. Lu, Q. Chen, Y. Li, Y. Liu, Y. Zhang, Y. Huang, L. Zhu, Food Res. Int. 147, 110450 (2021)

    Article  CAS  Google Scholar 

  7. Codex Alimentarius Commission (2012), Maximum residue limits for veterinary drugs in foods updated as at the 35th session of the Codex Alimentarius Commission, http://www.codexalimentarius.org/standards/veterinary-drugs-mrls/en/. Accessed 15 Sept 2021

  8. S.E. Mashana, C. Sindato, M.L. Matee, L.E.G. Mboera, Antibiotics 10, 1 (2021)

    Google Scholar 

  9. Y.M. Li, Y. Zhang, Y. Zhou, Z.F. Liu, Q. Meng, X.S. Feng, Food Rev. Int. (2021). https://doi.org/10.1080/87559129.2021.1952423

    Article  Google Scholar 

  10. X. Wang, S. Yang, Y. Li, J. Zhang, Y. Jin, W. Zhao, Y. Zhang, J. Huang, P. Wang, C. Wu, J. Zhou, J. Chromatogr. A 1542, 28 (2018)

    Article  CAS  Google Scholar 

  11. J. Wang, Q. Zhao, N. Jiang, W. Li, L. Chen, X. Lin, Z. Xie, L. Youa, Q. Zhang, J. Chromatogr. A 1458, 24 (2017)

    Article  Google Scholar 

  12. S. Ji, F. Zhang, X. Luo, B. Yang, G. Jin, J. Yan, X. Liang, J. Chromatogr. A 1313, 113 (2013)

    Article  CAS  Google Scholar 

  13. J. Bazzan Arsand, L. Jank, M.T. Martins, R. Barcellos Hoff, F. Barreto, T. Mara Pizzolato, C. Sirtori, Talanta 154, 38 (2016)

    Article  Google Scholar 

  14. A. Moehbbi, A. Jouyban, M.A. Farajazdeh, M.R. Afshar Mogaddam, M. Nemati, J. Pharm. Biomed. Anal. 210, 114552 (2022)

    Article  Google Scholar 

  15. M. Locatelli, M. Teresa Ciavarella, D. Paolino, C. Celia, E. Fiscarelli, G. Ricciottif, A. Pompilio, G. Di Bonaventura, R. Grande, G. Zengin, L. Di Marzio, J. Chromatogr. A 1419, 58 (2015)

    Article  CAS  Google Scholar 

  16. A. Jouyban, M.A. Farajzadeh, M. Nemati, A.A. Alizadeh Nabil, M.R. Afshar Mogaddam, Microchem. J. 154, 104631 (2020)

    Article  CAS  Google Scholar 

  17. M.A. Farajzadeh, A. Mohebbi, H. Fouladvand, M.R. Afshar Mogaddam, Microchem. J. 155, 104795 (2020)

    Article  CAS  Google Scholar 

  18. J. Wu, G. Lu, X. Huang, Microchem. J. 159, 105549 (2020)

    Article  CAS  Google Scholar 

  19. T. Yao, K. Du, Food Chem. 331, 127342 (2020)

    Article  CAS  Google Scholar 

  20. K. Köseoğlu, H.I. Ulusoy, E. Yilmaz, M. Soylak, J. Food Compost. Anal. 90, 103482 (2020)

    Article  Google Scholar 

  21. T. Liu, P. Cao, J. Geng, J. Li, M. Wang, M. Wang, X. Li, D. Yin, Food Chem. 142, 358 (2014)

    Article  CAS  Google Scholar 

  22. A. Grover, I. Mohiuddin, A.K. Malik, J.S. Aulakh, D. Kukkar, K.H. Kim, Chemosphere 264, 128429 (2021)

    Article  CAS  Google Scholar 

  23. S. Büyüktiryaki, R. Keçili, C.M. Hussain, Trends Anal. Chem. 127, 115893 (2020)

    Article  Google Scholar 

  24. M. Rajabi, M. Hemmati, J. Mol. Liq. 324, 114997 (2021)

    Article  CAS  Google Scholar 

  25. A. Jouyban, M. Nemati, M.A. Farazajdeh, A. Yazdani, M.R. Afshar Mogaddam, Microchem. J. 172, 106932 (2022)

    Article  CAS  Google Scholar 

  26. E. Zahiri, J. Khandaghi, M.A. Farajzadeh, M.R. Afshar Mogaddam, J. Chromatogr. A 1627, 461390 (2020)

    Article  CAS  Google Scholar 

  27. A. Mohebbi, M.A. Farajzadeh, S. Yaripour, M.R. Afshar Mogaddam, Excli J. 17, 952 (2018)

    PubMed  PubMed Central  Google Scholar 

  28. M.A. Farajzadeh, A. Mohebbi, H. Fouladvand, M.R. Afshar Mogaddam, Microchem. J. 155, 104795 (2020)

    Article  CAS  Google Scholar 

  29. D. Rajalingam, C. Loftis, J.J. Xu, T.K.S. Kumar, Trichloroacetic acid-induced protein precipitation involves the reversible association of a stable partially structured intermediate. Protein Sci. 18, 980 (2009)

    Article  CAS  Google Scholar 

  30. https://www.ich.org/page/multidisciplinary-guidelines. Accessed 29 Nov 2021

Download references

Acknowledgements

The financial support of Food and Drug Safety Research Center, Tabriz University of Medical Science for the study under Grant No. 66127 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Afshar Mogaddam.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jouyban, A., Nemati, M., Farajzadeh, M.A. et al. Homogenous dispersive solid phase extraction combined with ionic liquid based-dispersive liquid–liquid microextraction of gentamicin and streptomycin from milk prior to HPLC-MS/MS analysis. J IRAN CHEM SOC 19, 4309–4316 (2022). https://doi.org/10.1007/s13738-022-02606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02606-8

Keywords

Navigation