Skip to main content
Log in

Designing highly active Unique Hollow@ (Au@Pt) core–shell nanostructure as electro-catalyst for ethanol oxidation reactions

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A Unique Hollow@ (Au@Pt) core–shell nanostructure has been prepared by the in-situ sacrificial template method. Silica nanoparticles were used as a template which synthesized according to the Stöber synthesis method. A one-step procedure was applied to synthesis core–shell particles, followed by selective etching of silica particles by HF solution to synthesis the mono-dispersed hollow structure. The prepared Hollow@(Au@Pt) nanostructures can be used as superior catalysts for electrochemical ethanol oxidation. The results confirmed the formation of nanoparticles consisting of integrating two core–shell structures, forming a shell around the silica core, consisting of the core–shell structure of gold-centered and platinum-coated shells. Most importantly, core–shell structures showed excellent electro-catalytic activity. The electrochemical active surface area (ECSA) for SiO2@(Au@Pt), and Hollow@(Au@Pt) was 49.2, and 104.8 m2 g−1. The retention of mass activity for ethanol electro-oxidation, after 60 min, was 99.07% and 99.41% for SiO2@(Au@Pt), and Hollow@(Au@Pt), respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B. Habibi, S. Ghaderi, A comparative study of electrocatalytic performance of the M@Pt (M = Fe3O4, Co and Ni) nanoparticles for direct ethanol fuel cells. J. Iran. Chem. Soc. 14, 1633–1642 (2017). https://doi.org/10.1007/s13738-017-1103-3

    Article  CAS  Google Scholar 

  2. A. Farzaneh, E.K. Goharshadi, H. Gharibi, N. Saghatoleslami, H. Ahmadzadeh, Insights on the superior performance of nanostructured nitrogen-doped reduced graphene oxide in comparison with commercial Pt/C as cathode electrocatalyst layer of passive direct methanol fuel cell. Electrochim. Acta. 306, 220–228 (2019). https://doi.org/10.1016/j.electacta.2019.03.120

    Article  CAS  Google Scholar 

  3. G. Sreenivasa Kumar, N. Ramamanohar Reddy, B. Sravani, L. Subramanyam Sarma, T. Veera Reddy, V. Madhavi et al., Ultra-range bimetallic Pt–Pd nanospheres deposited on reduced graphene sheet as efficient electrocatalyst towards electrooxidation of methanol. J. Clust. Sci. 32, 27–36 (2021). https://doi.org/10.1007/s10876-019-01752-z

    Article  CAS  Google Scholar 

  4. H. Gharibi, S. Sadeghi, F. Golmohammadi, Electrooxidation of Ethanol on highly active and stable carbon supported PtSnO2 and its application in passive direct ethanol fuel cell: effect of tin oxide synthesis method. Electrochim. Acta. 190, 1100–1112 (2016). https://doi.org/10.1016/j.electacta.2015.12.208

    Article  CAS  Google Scholar 

  5. M. Ghanbari, G.H. Rounaghi, N. Ashraf, M. Paydar, I. Razavipanah, M. Karimi-Nazarabad, A facile approach for synthesis of a novel WO3–gC3N4/Pt–Sn–Os catalyst and its application for methanol electro-oxidation. J. Clust. Sci. 28, 2133–2146 (2017). https://doi.org/10.1007/s10876-017-1208-y

    Article  CAS  Google Scholar 

  6. J. Hosseini, M. Abdolmaleki, H.R. Pouretedal, M.H. Keshavarz, Electro-oxidation of methanol catalysed by porous nanostructured Fe/Pd-Fe electrode in alkaline medium. J. Iran. Chem. Soc. 13, 815–822 (2016). https://doi.org/10.1007/s13738-015-0796-4

    Article  CAS  Google Scholar 

  7. J.B. Raoof, S. Rashid-Nadimi, R. Ojani, Gold film supported nanostructured Cu/Pt catalyst with high electrochemical surface area and enhanced electrocatalytic activity for methanol oxidation. J. Iran. Chem. Soc. 12, 1561–1568 (2015). https://doi.org/10.1007/s13738-015-0628-6

    Article  CAS  Google Scholar 

  8. H.C. Kim, J.W. Hong, Highly Porous Au–Pt Bimetallic Urchin-Like Nanocrystals for Efficient Electrochemical Methanol Oxidation. Nanomaterials 11, 112 (2021)

    Article  CAS  Google Scholar 

  9. L. Gao, X. Li, Z. Yao, H. Bai, Y. Lu, C. Ma et al., Unconventional p–d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 141, 18083–18090 (2019)

    Article  CAS  Google Scholar 

  10. H. Ma, P. Chen, B. Li, J. Li, R. Ai, Z. Zhang et al., Thickness-tunable synthesis of ultrathin type-II dirac semimetal PtTe2 single crystals and their thickness-dependent electronic properties. Nano Lett. 18, 3523–3529 (2018)

    Article  CAS  Google Scholar 

  11. P. Hamidi, R. Ojani, H. Razmi, I. Razavipanah, High catalytic performance of Pt nanoparticles via support of conducting polymer for electrooxidation of methanol at carbon ceramic electrode. J. Iran. Chem. Soc. 12, 667–676 (2015). https://doi.org/10.1007/s13738-014-0525-4

    Article  CAS  Google Scholar 

  12. M.S. Ekrami-Kakhki, S. Pouyamanesh, S. Abbasi, G. Heidari, H. Beitollahi, Enhanced electrocatalytic performance of Pt nanoparticles incorporated CeO2 nanorods on polyaniline-chitosan support for methanol electrooxidation (experimental and statistical analysis). J. Clust. Sci. 32, 363–378 (2021). https://doi.org/10.1007/s10876-020-01795-7

    Article  CAS  Google Scholar 

  13. B.M. Daas, S. Ghosh, Catalytic ability of novel Pt/MCM-41 for fuel cells. J. Iran. Chem. Soc. 15, 987–996 (2018). https://doi.org/10.1007/s13738-018-1296-0

    Article  CAS  Google Scholar 

  14. C.J. Ruan, L.H. Han, X. Chen, X.C. Li, C.F. Zhang, P.F. Lu et al., First principles calculations of electronic properties on M13Pt42 (M = Al, Ga, In, Mg, Ca, Sr). J. Clust. Sci. 28, 1749–1759 (2017). https://doi.org/10.1007/s10876-017-1183-3

    Article  CAS  Google Scholar 

  15. J. Luo, L. Wang, D. Mott, P.N. Njoki, Y. Lin, T. He et al., Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Adv. Mater. 20, 4342–4347 (2008). https://doi.org/10.1002/adma.200703009

    Article  Google Scholar 

  16. H.M. Song, D.H. Anjum, R. Sougrat, M.N. Hedhili, N.M. Khashab, Hollow Au@ Pd and Au@ Pt core–shell nanoparticles as electrocatalysts for ethanol oxidation reactions. J. Mater. Chem. 22, 25003–25010 (2012)

    Article  CAS  Google Scholar 

  17. M. Khalid, N. Wasio, T. Chase, K. Bandyopadhyay, In Situ Generation of Two-Dimensional Au-Pt Core-Shell Nanoparticle Assemblies. Nanoscale Res. Lett. 5, 61–67 (2009). https://doi.org/10.1007/s11671-009-9443-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. J. Vacek, L. Onofrejová, B. Klejdus, V. Kubáň, Využití kapalinové chromatografie založené na hydrofilních interakcích pro separace polárních látek. Chem. List. 103, 381–385 (2009)

    CAS  Google Scholar 

  19. W. Guo, A.C. Johnston-Peck, Y. Zhang, Y. Hu, J. Huang, W.D. Wei, Cooperation of hot holes and surface adsorbates in plasmon-driven anisotropic growth of gold nanostars. J. Am. Chem. Soc. 142, 10921–10925 (2020)

    Article  CAS  Google Scholar 

  20. Y. Han, J. Kim, S. Lee, S. Choi, J.W. Hong, Synthesis of Pd-Pt Ultrathin Assembled Nanosheets as Highly Efficient Electrocatalysts for Ethanol Oxidation. Chem. Asian J. 15, 1324–1329 (2020)

    Article  CAS  Google Scholar 

  21. N. Wang, W. Zhao, M. Zhang, P. Cao, S. Sun, H. Ma et al., Bismuth-induced synthesis of Au–X (X= Pt, Pd) nanoalloys for electrocatalytic reactions. Chem. Commun. 57, 391–394 (2021)

    Article  CAS  Google Scholar 

  22. K. Sasaki, K.A. Kuttiyiel, R.R. Adzic, Designing high performance Pt monolayer core-shell electrocatalysts for fuel cells, Curr. Opin. Electrochem. (2020).

  23. S. Jeong, S.Y. Lee, M.-W. Kim, J.H. Kim, Multifunctional hollow porous Au/Pt nanoshells for simultaneous surface-enhanced Raman scattering and catalysis. Appl. Surf. Sci. 543, 148831 (2021)

    Article  CAS  Google Scholar 

  24. P. Wu, H. Liu, Y. Cao, S. Xi, Z. Li, Z. He et al., Mesostructured cellular foam silica supported Au–Pt nanoalloy: Enrichment of d-state electrons for promoting the catalytic synergy. Microporous Mesoporous Mater. 316, 110982 (2021)

    Article  CAS  Google Scholar 

  25. R. Cao, T. Xia, R. Zhu, Z. Liu, J. Guo, G. Chang et al., Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation. Appl. Surf. Sci. 433, 840–846 (2018)

    Article  CAS  Google Scholar 

  26. 978-3-319-29749-1_3 @ link.springer.com, (n.d.). https://doi.org/10.1007/978-3-319-29749-1_3.

  27. Y.C. Shi, S.S. Chen, J.J. Feng, X.X. Lin, W. Wang, A.J. Wang, Dicationic ionic liquid mediated fabrication of Au@Pt nanoparticles supported on reduced graphene oxide with highly catalytic activity for oxygen reduction and hydrogen evolution. Appl. Surf. Sci. 441, 438–447 (2018). https://doi.org/10.1016/j.apsusc.2018.01.240

    Article  CAS  Google Scholar 

  28. C. Engelbrekt, N. Šešelj, R. Poreddy, A. Riisager, J. Ulstrup, J. Zhang, Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis. J. Mater. Chem. A. 4, 3278–3286 (2016). https://doi.org/10.1039/C5TA08922K

    Article  CAS  Google Scholar 

  29. S.N. Abdollahi, M. Naderi, G. Amoabediny, Synthesis and physicochemical characterization of tunable silica-gold nanoshells via seed growth method. Colloids Surf. A Physicochem. Eng. Asp. 414, 345–351 (2012). https://doi.org/10.1016/j.colsurfa.2012.08.043

    Article  CAS  Google Scholar 

  30. A. Ghazitabar, M. Naderi, R. Ranjbar, A.R. Azadmehr, Using thiourea ligand of gold-thiourea complex to facile direct synthesis of silica@gold core-shell nanostructures. J. Iran. Chem. Soc. 12, 2253–2261 (2015). https://doi.org/10.1007/s13738-015-0704-y

    Article  CAS  Google Scholar 

  31. S.N. Abdollahi, M. Naderi, G. Amoabediny, Synthesis and characterization of hollow gold nanoparticles using silica spheres as templates. Colloids Surf. A Physicochem. Eng. Asp. 436, 1069–1075 (2013). https://doi.org/10.1016/j.colsurfa.2013.08.028

    Article  CAS  Google Scholar 

  32. R. Aghababazadeh, S. Tabatabae, A. Shokuhfar, A.R. Mirhabibi, Synthesis and characterization of silica nanoparticles. Solid State Phenom. 121–123, 49–52 (2007). https://doi.org/10.4028/www.scientific.net/SSP.121-123.49

    Article  Google Scholar 

  33. N. Ghazali, M.R. Johan, Environmental modification of self-assembled plasmonic core-shell cluster (silica-gold nanoparticles) for surface enhanced Raman scattering (SERS). Opt. Mater. Express. 6, 1935 (2016). https://doi.org/10.1364/ome.6.001935

    Article  CAS  Google Scholar 

  34. L. Huo, W. Li, L. Lu, H. Cui, S. Xi, J. Wang et al., Preparation, structure, and properties of three-dimensional ordered α-Fe2O3 nanoparticulate film. Chem. Mater. 12, 790–794 (2000). https://doi.org/10.1021/cm990690+

    Article  CAS  Google Scholar 

  35. J. Antonio, A. Júnior, J.B. Baldo, D. De Materiais, U. Federal, D.S. Carlos et al., The behavior of zeta potential of silica suspensions. New J. Glass Ceram. 4, 29–37 (2014)

    Article  Google Scholar 

  36. D. Sun, S. Kang, C. Liu, Q. Lu, L. Cui, B. Hu, Effect of zeta potential and particle size on the stability of SiO2 nanospheres as carrier for ultrasound imaging contrast agents. Int. J. Electrochem. Sci. 11, 8520–8529 (2016). https://doi.org/10.20964/2016.10.30

    Article  CAS  Google Scholar 

  37. S. Wei, Q. Wang, J. Zhu, L. Sun, H. Lin, Z. Guo, Multifunctional composite core-shell nanoparticles. Nanoscale 3, 4474–4502 (2011). https://doi.org/10.1039/c1nr11000d

    Article  CAS  PubMed  Google Scholar 

  38. C. Graf, A. Van Blaaderen, Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18, 524–534 (2002). https://doi.org/10.1021/la011093g

    Article  CAS  Google Scholar 

  39. M. Liao, W. Li, X. Xi, C. Luo, S. Gui, C. Jiang et al., Highly active Aucore@Ptclustercatalyst for formic acid electrooxidation. J. Electroanal. Chem. 791, 124–130 (2017). https://doi.org/10.1016/j.jelechem.2017.03.024

    Article  CAS  Google Scholar 

  40. S. He, Z. Fei, L. Li, B. Sun, X. Feng, W. Ji, Synthesis and catalytic activity of M@SiO2 (M = Ag, Au, and Pt) nanostructures via “core to shell” and “shell then core” approaches. Chin. J. Catal. 34, 2098–2109 (2013). https://doi.org/10.1016/S1872-2067(12)60716-5

    Article  CAS  Google Scholar 

  41. S. Devarajan, P. Bera, S. Sampath, Bimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au-Ag, Au-Pd, and Au-Pt in sol-gel derived silicates. J. Colloid Interface Sci. 290, 117–129 (2005). https://doi.org/10.1016/j.jcis.2005.04.034

    Article  CAS  PubMed  Google Scholar 

  42. C. Venkateswara Rao, C.R. Cabrera, Y. Ishikawa, Graphene-supported Pt–Au alloy nanoparticles: a highly efficient anode for direct formic acid fuel cells. J. Phys. Chem. C. 115, 21963–21970 (2011). https://doi.org/10.1021/jp202561n

    Article  CAS  Google Scholar 

  43. M. Cheng, M. Zhu, Y. Du, P. Yang, Enhanced photocatalytic hydrogen evolution based on efficient electron transfer in triphenylamine-based dye functionalized Au@Pt bimetallic core/shell nanocomposite. Int. J. Hydrogen Energy. 38, 8631–8638 (2013). https://doi.org/10.1016/j.ijhydene.2013.05.040

    Article  CAS  Google Scholar 

  44. R. Al-Oweini, H. El-Rassy, Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Mol. Struct. 919, 140–145 (2009). https://doi.org/10.1016/j.molstruc.2008.08.025

    Article  CAS  Google Scholar 

  45. G.I. Nazarchuk, I.V. Melnyk, Y.L. Zub, O.I. Makridina, A.I. Vezentsev, Mesoporous silica containing Si(CH 2) 3NHC(S)NHC 2H 5 functional groups in the surface layer. J. Colloid Interface Sci. 389, 115–120 (2013). https://doi.org/10.1016/j.jcis.2012.08.057

    Article  CAS  PubMed  Google Scholar 

  46. R. Sardar, P.M. Shem, C. Pecchia-Bekkum, N.S. Bjorge, J.S. Shumaker-Parry, Single-step generation of fluorophore-encapsulated gold nanoparticle core-shell materials. Nanotechnology 21, 345603 (2010). https://doi.org/10.1088/0957-4484/21/34/345603

    Article  CAS  PubMed  Google Scholar 

  47. L. Qian, Y. Sha, X. Yang, Simple and convenient preparation of Au-Pt core-shell nanoparticles on surface via a seed growth method. Thin Solid Films 515, 1349–1353 (2006). https://doi.org/10.1016/j.tsf.2006.03.036

    Article  CAS  Google Scholar 

  48. Z. Liang, A. Susha, F. Caruso, Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chem. Mater. 15, 3176–3183 (2003). https://doi.org/10.1021/cm031014h

    Article  CAS  Google Scholar 

  49. M.D. Obradović, A.V. Tripković, S.L. Gojković, The origin of high activity of Pt-Au surfaces in the formic acid oxidation. Electrochim. Acta. 55, 204–209 (2009). https://doi.org/10.1016/j.electacta.2009.08.038

    Article  CAS  Google Scholar 

  50. J.K. Nørskov, Catalysis—calculations and concepts. Adv. Catal. Impact Surf. Sci. Catal. 45, 71 (2001)

    Google Scholar 

  51. E. Environ, Y. Lee, J. Kim, S. Yun, S. Nam, Y. Shao-horn, Environmental Science activities for fuel cell applications. Energy Environ. Sci. 5, 8328–8334 (2012). https://doi.org/10.1039/c2ee21156d

    Article  CAS  Google Scholar 

  52. T. Bian, H. Zhang, Y. Jiang, C. Jin, J. Wu, H. Yang et al., Epitaxial growth of twinned Au–Pt core–shell star-shaped decahedra as highly durable electrocatalysts. Nano Lett. 15, 7808–7815 (2015)

    Article  CAS  Google Scholar 

  53. M. Ma, H.A. Hansen, M. Valenti, Z. Wang, A. Cao, M. Dong et al., Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films. Nano Energy 42, 51–57 (2017). https://doi.org/10.1016/j.nanoen.2017.09.043

    Article  CAS  Google Scholar 

  54. A.K. Singh, Q. Xu, Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5, 652–676 (2013). https://doi.org/10.1002/cctc.201200591

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported and funded by Iran National Science Foundation (INSF) [Grant Number 93007637].

Author information

Authors and Affiliations

Authors

Contributions

N.A.: Writing—Original Draft, Investigation, Formal analysis, Validation; M.N.: Supervision, Conceptualization, Methodology, Validation, Data curation, Review & Editing; M.R.: Counselor, Conceptualization, Methodology, Validation, Data curation, Review & Editing; V.V: Formal analysis, Validation.

Corresponding author

Correspondence to Malek Naderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabi, N., Naderi, M., Rezaei, M. et al. Designing highly active Unique Hollow@ (Au@Pt) core–shell nanostructure as electro-catalyst for ethanol oxidation reactions. J IRAN CHEM SOC 19, 4261–4274 (2022). https://doi.org/10.1007/s13738-022-02599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02599-4

Keywords

Navigation