Skip to main content

Advertisement

Log in

First Principles Calculations of Electronic Properties on M13Pt42 (M = Al, Ga, In, Mg, Ca, Sr)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The structural and electronic properties of the M13Pt42 (M = Al, Ga, In, Mg, Ca, Sr) clusters, in which the core–shell icosahedral M13 substructures are non-transition metal (TM) elements, are investigated by using first-principles method. Our calculations show that Mg13Pt42, Al13Pt42, Ga13Pt42 acted as oxygen reduction reaction (ORR) catalysts is stable while considering both the core–shell interaction energy (Ecs) and the potential energy (Udiss). By analyzing the partial density of state, we find that it is more favorable to form pd hybridization than to form dd hybridization when p-block element cores interact with Pt shell. The absorption energies of O atom show that the adsorption energy of surface is closely related to the charge that the surface gains. Our work may find out new Pt-alloy catalysts for enhancing the ORR activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. P. Vinayan, R. Nagar, N. Rajalakshmi, and S. Ramaprabhu (2012). Adv. Funct. Mater. 22, 3519–3526.

    Article  CAS  Google Scholar 

  2. M. F. Mathias, R. Makharia, H. A. Gasteiger, J. J. Conley, T. J. Fuller, C. J. Gittleman, S. S. Kocha, D. P. Miller, C. K. Mittelsteadt, and T. Xie (2005). Interfaces. 14, 24–35.

    CAS  Google Scholar 

  3. K. J. Klabunde (ed.) Nanoscale Materials in Chemistry (Wiley, Hoboken, 2001).

    Google Scholar 

  4. E. Apra and A. Fortunelli (2003). J. Phys. Chem. A. 107, 2934–2942.

    Article  CAS  Google Scholar 

  5. M. Shao, A. Peles, and K. Shoemaker (2011). Nano Lett. 11, 3714–3719.

    Article  CAS  Google Scholar 

  6. E. Antolini, J. R. C. Salgado, and E. R. Gonzalez (2006). J. Power Sources. 160, 957–968.

    Article  CAS  Google Scholar 

  7. K. Sasaki, H. Naohara, Y. Cai, Y. M. Choi, P. Liu, M. B. Vukmirovic, J. X. Wang, and R. R. Adizic (2010). Angew. Chem. Int. Ed. 49, 8602–8607.

    Article  CAS  Google Scholar 

  8. F. H. B. Lima, J. Zhang, M. H. Shao, K. Sasaki, M. B. Vukmirovic, E. A. Ticianelli, and R. R. Adzic (2007). J. Phys. Chem. C. 111, 404–410.

    Article  CAS  Google Scholar 

  9. M. J. Piotrowski, P. Piquini, and J. Da Silva (2012). J. Phys. Chem. C. 116, 18432–18439.

    Article  CAS  Google Scholar 

  10. S. H. Noh, M. H. Seo, J. K. Seo, P. Fisher, and B. Han (2013). Nanoscale. 5, 8625–8633.

    Article  CAS  Google Scholar 

  11. P. Cheng, C. Liu, Y. P. Yang, and S. P. Huang (2015). Chem. Phys. 452, 1–8.

    Article  CAS  Google Scholar 

  12. B. B. Xiao, Y. F. Zhu, X. Y. Lang, Z. Wen, and Q. Jiang (2014). Sci Rep. 4, 1182–1186.

    Google Scholar 

  13. V. B. Kumar, J. Sanetuntikul, P. Ganesan, Z. Porat, S. Shanmugam, and A. Gedanken (2016). Electrochim. Acta. 190, 659–667.

    Article  CAS  Google Scholar 

  14. G. Kresse and J. Furthmüller (1996). Comput. Mater. Sci. 6, 15–50.

    Article  CAS  Google Scholar 

  15. G. Kresse and D. Joubert (1999). Phys. Rev. B. 59, 1758–1775.

    Article  CAS  Google Scholar 

  16. J. P. Perdew, K. Burke, and M. Ernzerhof (1997). Phys. Rev. Lett. 78, 1396.

    Article  CAS  Google Scholar 

  17. J. K. Seo, A. Khetan, M. H. Seo, H. Kim, and B. Han (2013). J. Power Sources. 238, 137–143.

    Article  CAS  Google Scholar 

  18. L. Gan, R. Yu, J. Luo, Z. Y. Cheng, and J. Zhu (2012). J. Phys. Chem. Lett. 3, 934–938.

    Article  CAS  Google Scholar 

  19. S. Prabhudev, M. Bugnet, C. Bock, and G. A. Botton (2013). ACS Nano. 7, 6103–6110.

    Article  CAS  Google Scholar 

  20. J. R. Kitchin, J. K. Norskov, M. A. Barteau, and J. G. Chen (2004). J. Chem. Phys. 120, 10240–10246.

    Article  CAS  Google Scholar 

  21. J. R. Kitchin, J. K. Norskov, M. A. Barteau, and J. G. Chen (2004). Phys. Rev. Lett. 93, 156801/1–8.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Basic Research Program of China (973 Program) under Grant No. 2014CB643900, the Open Fund of IPOC (BUPT), the Open Program of State Key Laboratory of Functional Materials for Informatics, and the Fundamental Research Funds for the Central Universities (No. 2015RC28). P.F.Guan acknowledges the computational support from the Beijing Computational Science Research Center (CSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Fei Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, CJ., Han, LH., Chen, X. et al. First Principles Calculations of Electronic Properties on M13Pt42 (M = Al, Ga, In, Mg, Ca, Sr). J Clust Sci 28, 1749–1759 (2017). https://doi.org/10.1007/s10876-017-1183-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1183-3

Keywords

Navigation