Skip to main content
Log in

Visible light photodegradation of blue basic 41 using cobalt doped ZnO: Box–Behnken optimization and DFT calculation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

CoxZn1−xO system (0 ≤ x ≤ 0.2) was synthesized using the solution combustion method with urea as a fuel source. Photocatalytic tests were performed under visible light to assess the Basic Blue 41 (BB41) conversion. Various characterization techniques, including XRD, FT-IR analysis, SEM, EDS, XRF, BET-surface area, and DRS were used to investigate the composition, structure, and morphology of the synthesized catalysts. In addition, the density functional theory calculation was used in order to study the electronic properties of the ZnO structure. The Box–Behnken model was valid for describing the degradation of BB41 dye according to the analysis of variances results. A maximum conversion of 100% for BB41 dye has been reached with high mineralization and important removal of chemical oxygen demand. The optimum conditions for BB41 conversion are reported. On the other hand, the reuse tests of the best catalyst showed high-performance stability after five cycles. Furthermore, the activity of superoxide ions (O2·−) and hydroxyl radicals (OH.) as the spices responsible for BB41 dye conversion was well confirmed by the free radicals scavenging tests. The use of Box–Behnken optimization and DFT calculation applied to the synthesized catalysts proves to be a very suitable procedure to establish the operating conditions under which the synthesis strategy of the CoxZn1−xO catalyst in its activity in the visible region performs an excellent efficiency for the degradation of organic dyes and makes contributions to the current literature related to the field of environmental technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Zouheir et al., Nano Futur. 5, 025004 (2021)

    Article  CAS  Google Scholar 

  2. A. Hsini et al., J. Colloid Interface Sci. 585, 560–573 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. A. Dra et al., Sci. World J. 2020, 8 (2020)

    Google Scholar 

  4. A. Thiam et al., J. Chem. 2020, 14 (2020)

    Article  CAS  Google Scholar 

  5. A. Dra et al., Sci. World J. 2020, 4815767 (2020)

    Google Scholar 

  6. Y. Jiang, Y. Sun, H. Liu, F. Zhu, H. Yin, Dye. Pigment. 78, 77–83 (2008)

    Article  CAS  Google Scholar 

  7. L.E. Fragaa, M.V.B. Zanonia, Eclet. Quim. 34, 27–36 (2009)

    Article  Google Scholar 

  8. L.O. Pereira, R.V. Lelo, G.C.M. Coelho, F. Magalhães, J. Iran. Chem. Soc. 16, 2281–2289 (2019)

    Article  CAS  Google Scholar 

  9. S. Boudiaf et al., J. Environ. Chem. Eng. 9, 105572 (2021)

    Article  CAS  Google Scholar 

  10. M. Karimi-Nazarabad, E.K. Goharshadi, R. Mehrkhah, M. Davardoostmanesh, Sep. Purif. Technol. 279, 119788 (2021)

    Article  CAS  Google Scholar 

  11. M. Yousefi, H. Eshghi, M. Karimi-Nazarabad, A. Farhadipour, New J. Chem. 44, 20470–20478 (2020)

    Article  CAS  Google Scholar 

  12. M. Karimi-Nazarabad, H. Ahmadzadeh, E.K. Goharshadi, Sol. Energy. 227, 426–437 (2021)

    Article  CAS  Google Scholar 

  13. O.F.S. Khasawneh et al., J. Environ. Chem. Eng. 9, 104921 (2021)

    Article  CAS  Google Scholar 

  14. S. Feng, F. Li, J. Environ. Chem. Eng. 9, 105488 (2021)

    Article  CAS  Google Scholar 

  15. I. Mimouni et al., Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-021-16146-w

    Article  Google Scholar 

  16. O. Assila et al., J. Chem. 2020, 1–13 (2020)

    Article  CAS  Google Scholar 

  17. N. Davari, M. Farhadian, A.R.S. Nazar, M. Homayoonfal, J. Environ. Chem. Eng. 5, 5707–5720 (2017)

    Article  CAS  Google Scholar 

  18. T. Leshuk et al., ACS Appl. Mater. Interfaces. 5, 1892–1895 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. N. Chi, T. Mai, T. Thi, T. Van, R. Juang, Sep. Purif. Technol. (2020). https://doi.org/10.1016/j.seppur.2019.115962

    Article  Google Scholar 

  20. R. Djellabi, L. Zhang, B. Yang, M.R. Haider, X. Zhao, Sep. Purif. Technol. 229, 115830 (2019)

    Article  CAS  Google Scholar 

  21. K. Priyanka, N. Remya, M. Behera, Sep. Purif. Technol. 251, 117319 (2020)

    Article  CAS  Google Scholar 

  22. H.S. Alanazi, N. Ahmad, F.A. Alharthi, RSC Adv. 11, 10194–10202 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, S.M. Rezaei Darvishi, Ind. Eng. Chem. Res. 59, 15894–15911 (2020)

    Article  CAS  Google Scholar 

  24. K. Tanji et al., Catal. Today. In Press, 1–11 (2020).

  25. K. Tanji et al., Chemosphere 241, 125009 (2020)

    Article  CAS  PubMed  Google Scholar 

  26. M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Chem. Mater. 14, 2812–2816 (2002)

    Article  CAS  Google Scholar 

  27. S. Mozia et al., Appl. Catal. B Environ. 55, 195–200 (2005)

    Article  CAS  Google Scholar 

  28. U. Altinbaş, V. Eroǧlu, I. Öztürk, Water Sci. Technol. 40, 269–274 (1999)

    Article  Google Scholar 

  29. K. Tanji et al., J. Photochem. Photobiol. A Chem. 382, 111877 (2019)

    Article  CAS  Google Scholar 

  30. M. Zouhier et al., J. Photochem. Photobiol. A Chem. 390, 112305 (2020)

    Article  CAS  Google Scholar 

  31. X. Ren et al., Sep. Purif. Technol. 270, 118797 (2021)

    Article  CAS  Google Scholar 

  32. Q. Wu, Y. Cui, L. Yang, G. Zhang, D. Gao, Sep. Purif. Technol. 142, 168–175 (2015)

    Article  CAS  Google Scholar 

  33. B. Dindar, A.C. Güler, A.C. Guler, Environ. Nanotechnol. Monit. Manag. 10, 457–466 (2018)

    Google Scholar 

  34. W. Vallejo et al., Catalysts 10, 528 (2020)

    Article  CAS  Google Scholar 

  35. Y. Naciri et al., J. Colloid Interface Sci. 572, 269–280 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. Y. Lu et al., Nano Res. 4, 1144–1152 (2011)

    Article  CAS  Google Scholar 

  37. M.S. Hamdy et al., J. Nanostructure Chem. 11, 147–163 (2020)

    Article  CAS  Google Scholar 

  38. S. Lanfredi, M.A.L. Nobre, P.S. Poon, J. Matos, Molecules 25, 96 (2020)

    Article  CAS  Google Scholar 

  39. B. Ihssane et al., Acta Chromatogr. 23, 41–57 (2011)

    Article  CAS  Google Scholar 

  40. M.S. Shalaby, H. Abdallah, R. Chetty, M. Kumar, A.M. Shaban, Nano-Struct. Nano-Objects 19, 100342 (2019)

    Article  CAS  Google Scholar 

  41. I. Khouni, B. Marrot, R. Ben Amar, Chem. Eng. J. 156, 121–133 (2010)

    Article  CAS  Google Scholar 

  42. P. Giannozzi et al., J. Phys. Condens. Matter. 21, 395502 (2009)

    Article  PubMed  Google Scholar 

  43. P. Giannozzi et al., J. Phys. Condens. Matter. 29, 465901 (2017).

  44. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  PubMed  Google Scholar 

  45. H.J. Lee, B.S. Kim, C.R. Cho, S.Y. Jeong, Phys. Status Solidi Basic Res. 241, 1533–1536 (2004)

    Article  CAS  Google Scholar 

  46. R. Elilarassi, G. Chandrasekaran, J. Mater. Sci. Mater. Electron. 24, 96–105 (2013)

    Article  CAS  Google Scholar 

  47. S. Kalpana, S.S. Krishnan, T.S. Senthil, S.V. Elangovan, J. Ovonic Res. 13, 263–269 (2017)

    CAS  Google Scholar 

  48. K. Ravichandran et al., Powder Technol. 274, 250–257 (2015)

    Article  CAS  Google Scholar 

  49. G. Vijayaprasath, R. Murugan, T. Mahalingam, G. Ravi, J. Mater. Sci. Mater. Electron. 26, 7205–7213 (2015)

    Article  CAS  Google Scholar 

  50. N. Pushpa, M.K. Kokila, J. Lumin. 190, 100–107 (2017)

    Article  CAS  Google Scholar 

  51. M. Ivill et al., New J. Phys. 10, 065002 (2008)

    Article  CAS  Google Scholar 

  52. S.K. Mandal, A.K. Das, T.K. Nath, D. Karmakar, Appl. Phys. Lett. 89, 1–4 (2006)

    Google Scholar 

  53. S.D. Birajdar, P.P. Khirade, V.R. Bhagwat, A.V. Humbe, K.M. Jadhav, J. Alloys Compd. 683, 513–526 (2016)

    Article  CAS  Google Scholar 

  54. S.D. Birajdar, P.P. Khirade, T.S. Saraf, R.C. Alange, K.M. Jadhav, J. Alloys Compd. 691, 355–363 (2017)

    Article  CAS  Google Scholar 

  55. E. Baeissa, Front. Nanosci. Nanotechnol. 2, 1–5 (2016)

    Article  Google Scholar 

  56. L. Roza, Y. Febrianti, S. Iwan, V. Fauzia, Surf. Interfaces 18, 100435 (2020)

    Article  CAS  Google Scholar 

  57. Z.N. Kayani, I. Shah, S. Riaz, S. Naseem, J. Mater. Sci. Mater. Electron. 28, 5953–5961 (2017)

    Article  CAS  Google Scholar 

  58. R. López, R. Gómez, J. Sol Gel Sci. Technol. 61, 1–7 (2012)

    Article  CAS  Google Scholar 

  59. H.A. Ahsaine et al., Chem. Select 3, 7778–7791 (2018)

    CAS  Google Scholar 

  60. B.M. Rajbongshi, S.K. Samdarshi, Appl. Catal. B Environ. 144, 435–441 (2014)

    Article  CAS  Google Scholar 

  61. O. Gürbüz, S. Güner, Ö. Büyükbakkal, S. Çalişkan, J. Magn. Magn. Mater. 373, 90–95 (2015)

    Article  CAS  Google Scholar 

  62. P.R. Chithira, T. Theresa John, J. Magn. Magn. Mater. 496, 165928 (2020)

    Article  CAS  Google Scholar 

  63. M.V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, F. Carrasco-Marin, Carbon N. Y. 37, 1215–1221 (1999)

    Article  CAS  Google Scholar 

  64. S. Nam, H. Cho, J. Han, N. Her, J. Yoon, Process Saf. Environ. Prot. 113, 10–21 (2018)

    Article  CAS  Google Scholar 

  65. S. Sohrabi, F. Akhlaghian, Process Saf. Environ. Prot. 99, 120–128 (2015)

    Article  CAS  Google Scholar 

  66. A. Loqman, B. El Bali, J. Lützenkirchen, P.G. Weidler, A. Kherbeche, Appl. Water Sci. 7, 3649–3660 (2017)

    Article  CAS  Google Scholar 

  67. B. Samet, T. Mnif, M. Chaabouni, Cem. Concr. Compos. 29, 741–749 (2007)

    Article  CAS  Google Scholar 

  68. L. Elleuch et al., J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2019.121119

    Article  PubMed  Google Scholar 

  69. A.M. Tayeb, M.A. Tony, E.K. Ismaeel, Appl. Water Sci. 9, 43 (2019)

    Article  CAS  Google Scholar 

  70. Q. Xiao, J. Zhang, C. Xiao, X. Tan, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 142, 121–125 (2007)

    Article  CAS  Google Scholar 

  71. Y. Naciri et al., J. Environ. Chem. Eng. 6, 1840–1847 (2018)

    Article  CAS  Google Scholar 

  72. A.S. Manikandan, K.B. Renukadevi, K. Ravichandran, P.V. Rajkumar, K. Boubaker, J. Mater. Sci. Mater. Electron. 27, 11890–11901 (2016)

    Article  CAS  Google Scholar 

  73. R.M. Mohamed, D. McKinney, M.W. Kadi, I.A. Mkhalid, W. Sigmund, Ceram. Int. 42, 2299–2305 (2016)

    Article  CAS  Google Scholar 

  74. R. Marandi, M.E. Olya, A.A.M. Sharif, J. Saudi Chem. Soc. 18, 317–326 (2014)

    Article  CAS  Google Scholar 

  75. S. Sheik Mydeen, R. Raj Kumar, M. Kottaisamy, V.S. Vasantha, J. Saudi Chem. Soc. 24, 393–406 (2020)

    Article  CAS  Google Scholar 

  76. H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El-Bindary, J. Chin. Chem. Soc. 66, 89–98 (2019)

    Article  CAS  Google Scholar 

  77. H. Ait Ahsaine, Mater. Lett. 276, 128221 (2020)

    Article  CAS  Google Scholar 

  78. M. Mousavi, A. Habibi-yangjeh, M. Abitorabi, J. Colloid Interface Sci. 480, 218–231 (2016)

    Article  CAS  PubMed  Google Scholar 

  79. B. Brahimi, H. Kenfoud, Y. Benrighi, O. Baaloudj, Photochemistry 1, 319–329 (2021)

    Google Scholar 

  80. E. Stathatos, D. Papoulis, C.A. Aggelopoulos, D. Panagiotaras, A. Nikolopoulou, J. Hazard. Mater. 211–212, 68–76 (2012)

    Article  PubMed  CAS  Google Scholar 

  81. A. Apostolopoulou, S. Mahajan, R. Sharma, E. Stathatos, J. Phys. Chem. Solids. 112, 37–42 (2018)

    Article  CAS  Google Scholar 

  82. M. Karimi-Shamsabadi, M. Behpour, Int. J. Hydrogen Energy. 46, 26989–27013 (2021)

    Article  CAS  Google Scholar 

  83. N.M. Mahmoodi, S. Keshavarzi, M. Ghezelbash, J. Environ. Chem. Eng. 5, 3684–3689 (2017)

    Article  CAS  Google Scholar 

  84. A. Rapsomanikis, A. Apostolopoulou, E. Stathatos, P. Lianos, J. Photochem. Photobiol. A Chem. 280, 46–53 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In the present work, the authors are grateful for the Innovation Center (University Sidi Mohammed Ben Abdellah of Fez, Morocco for performing the XRD, FTIR and XRF analysis and for the general research services (SEM) at the CITIUS (University of Seville, Spain).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karim Tanji, Yassine Naciri or J. A. Navio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanji, K., Zouheir, M., Naciri, Y. et al. Visible light photodegradation of blue basic 41 using cobalt doped ZnO: Box–Behnken optimization and DFT calculation. J IRAN CHEM SOC 19, 2779–2794 (2022). https://doi.org/10.1007/s13738-022-02496-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02496-w

Keywords

Navigation