Skip to main content

Advertisement

Log in

Micellization, molal volume and polarizability of benzyl and allyl-methyl imidazolium ionic liquids in aqueous and alcoholic-aqueous solvents

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Conductivity, density and refractive index of 1-Benzyl 3- Methyl imidazolium chloride(BzMImCl)and1-Allyl 3-Methyl imidazolium Bromide(AMImBr) ionic liquids (ILs)At 298.15 K, Mixed solvents have been tested with different mole fractions of alcohols, containing aqueous and alcoholic-aqueous (methanol, ethanol and glycerol). The conductivity and surface tension and refractive index measurements were used to assess the critical micelle concentration (CMC) of (BzMImCl) and (AMImBr). The CMC was found to increase as the alcohol mole fraction increased in all solvents used. The results indicate that the CMC of (BzMImCl) and (AMImBr) methanol, ethanol, and glycerol, in that order. Micellization was discovered to be a naturally occurring process. The molar volume of the two surfactants was calculated and discussed based on the density information. The polarizability and molar refraction of BzMImCl and AMImBr were also measured and discussed using the refractive index results. For all calculations, a computer program was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Ohno, Electrochemical Aspects of Ionic Liquids (Wiley, New Jersey, 2005)

    Book  Google Scholar 

  2. J.A. Lazzús, Estimation of density as a function of temperature and pressure for imidazolium-based lonic liquids using a multilayer net with particle swarm optimization. Int. J. Thermophys. 30(3), 883–909 (2009). https://doi.org/10.1007/s10765-009-0591-5

    Article  CAS  Google Scholar 

  3. N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37(1), 123–150 (2008). https://doi.org/10.1039/B006677J

    Article  CAS  PubMed  Google Scholar 

  4. J. Stoimenovski, D.R. MacFarlane, K. Bica, R.D. Rogers, Crystalline versus ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm. Res. 27(4), 521–526 (2010)

    Article  CAS  Google Scholar 

  5. J.L. Shamshina, S.P. Kelley, G. Gurau, R.D. Rogers, Chemistry: develop ionic liquid drugs. Nature. 528(7581), 188–189 (2015). https://doi.org/10.1038/528188a

    Article  CAS  PubMed  Google Scholar 

  6. M. Smiglak, J. Pringle, X. Lu et al., Ionic liquids for energy, materials, and medicine. Chem. Commun. 50(66), 9228–9250 (2014). https://doi.org/10.1039/C4CC02021A

    Article  CAS  Google Scholar 

  7. K. Dong, Q. Wang, X. Lu, Q. Zhou, S. Zhang, Structure, interaction and hydrogen bond. Struct. Bond. 151, 1–38 (2013). https://doi.org/10.1007/978-3-642-38619-0-1

    Article  Google Scholar 

  8. Q. Zhang, Y. Hua, C. Xu, Y. Li, J. Li, P. Dong, Non-haloaluminate ionic liquids for low-temperature electrodeposition of rare-earth metals—A review. J. Rare Earths. 33(10), 1017–1025 (2015). https://doi.org/10.1016/S1002-0721(14)60520-2

    Article  CAS  Google Scholar 

  9. T. Payagala, D.W. Armstrong, Chiral ionic liquids: a compendium of syntheses and applications (2005–2012). Chirality 24(1), 17–53 (2012). https://doi.org/10.1002/chir.21975

    Article  CAS  PubMed  Google Scholar 

  10. Q. Zhang, J.M. Shreeve, Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem. Rev. 114(20), 10527–10574 (2014). https://doi.org/10.1021/cr500364t

    Article  CAS  PubMed  Google Scholar 

  11. S. Chen, S. Zhang, X. Liu et al., Ionic liquid clusters: structure, formation mechanism, and effect on the behavior of ionic liquids. Phys. Chem. Chem. Phys. 16(13), 5893–5906 (2014). https://doi.org/10.1039/c3cp53116c

    Article  CAS  PubMed  Google Scholar 

  12. Y. Zhao, H. Wang, Y. Pei, Z. Liu, J. Wang, Understanding the mechanism of LCST phase separation of mixed ionic liquids in water by MD simulations. Phys. Chem. Chem. Phys. 18(33), 23238–23245 (2016). https://doi.org/10.1039/c6cp03439j

    Article  CAS  PubMed  Google Scholar 

  13. B. Dong, N. Li, L. Zheng, L. Yu, T. Inoue, Surface adsorption and micelle formation of surface active ionic liquids in aqueous solution. Langmuir 23(8), 4178–4182 (2007). https://doi.org/10.1021/la0633029

    Article  CAS  PubMed  Google Scholar 

  14. T. Inoue, H. Ebina, B. Dong, L. Zheng, Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J. Colloid Interface Sci. 314(1), 236–241 (2007). https://doi.org/10.1016/j.jcis.2007.05.052

    Article  CAS  PubMed  Google Scholar 

  15. J. Sirieix-Plénet, L. Gaillon, P. Letellier, Behaviour of a binary solvent mixture constituted by an amphiphilic ionic liquid, 1-decyl-3-methylimidazolium bromide and water. Talanta 63(4), 979–986 (2004). https://doi.org/10.1016/j.talanta.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  16. M. Blesic, M.H. Marques, N.V. Plechkova, K.R. Seddon, L.P.N. Rebelo, A. Lopes, Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem. 9(5), 481–549 (2007). https://doi.org/10.1039/b615406a

    Article  CAS  Google Scholar 

  17. F. El-Dossoki, Micellization thermodynamics of some imidazolium ionic liquids in aqueous solutions–conductometric study. J. Solut. Chem. 42(1), 125–135 (2013). https://doi.org/10.1007/s10953-012-9947-8

    Article  CAS  Google Scholar 

  18. A. Bhattarai, G. Shrivastav, C. Adhikari, Study of critical micelle concentration of cetyltrimethylammonium bromide (CTAB) in pure water in presence and absence of magnesium sulphate and sodium sulphate by measuring conductivity meter. Bibechana J. 11(1), 123–127 (2014)

    Article  Google Scholar 

  19. O. Esan, O. Olubunmi, A. Olumuyiwa, O. Olarenwaju, Effects of temperature and tetramethylammonium bromide salt on the micellization of cetyltrimethylammonium bromide in aqueous medium: A conductometric studies. Int. J. Thermodyn. 18(4), 246–252 (2015). https://doi.org/10.5541/ijot.5000130524

    Article  CAS  Google Scholar 

  20. F. Corradini, G. Franchini, A. Marchetti, M. Tagliazucchi, Conductivity of tetraphenylphosphonium bromide in 2-methoxyethanol-water. J. Chem. Soc. Faraday Trans. 89(16), 3043–3047 (1993). https://doi.org/10.1039/FT9938903043

    Article  CAS  Google Scholar 

  21. Z. Haq, N. Rehman, F. Ali, N. Khan, H. Ullah, Physico-chemical properties of cationic surfactant cetyltrimethylammonium bromide in the presence of electrolyte. J. Mater. Environ. Sci. 8(3), 1029–1038 (2017). https://doi.org/10.1038/451414a

    Article  CAS  Google Scholar 

  22. F.I. El-Dossoki, S.A. Abd El-Maksoud, M.A. Migahed, M.M. Gouda, Micellization and solvation properties of newly synthesized imidazolium-and aminium-based surfactants. ACS Omega 5(16), 9429–9441 (2020). https://doi.org/10.1021/acsomega.0c00603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. L. Zhang, Z. Xu, Y. Wang, H. Li, Prediction of the solvation and structural properties of ionic liquids in water by two-dimensional correlation spectroscopy. J. Phys. Chem. B 112(20), 6411–6419 (2008). https://doi.org/10.1021/jp8001349

    Article  CAS  PubMed  Google Scholar 

  24. G. Kumar, M. Chauhan, A. Kumar, S. Chauhan, R. Kumar, A study on solution behaviour of sodiumdodecyl sulphate and cetyltrimethylammonium bromide in water-alcohol mixed media. Der. Chem. Sin. 3(3), 628–635 (2012)

    CAS  Google Scholar 

  25. L. Tennouga, A. Mansri, K. Medjahed, A. Chetouani, I. Warad, The micelle formation of cationic and anionic surfactants in aqueous medium: determination of CMC and thermodynamic parameters at different temperatures. J. Mater. Environ. Sci. 6(10), 2711–2716 (2015)

    CAS  Google Scholar 

  26. A. Halpern, Colloidal system. In: A Laboratory Textbook, 2nd ed. Upper Saddle River, Prentice Hall, pp 469–477 (1997)

  27. M. Motin, M. Mia, K. Reza, A. Islam, Effect of sodium dodecyl sulfate on volumetric properties of methanol ethanol n-propanol and iso-propanol at (298.15–323.15)K. Dhaka Univ. J. Sci. 60, 129–136 (2012). https://doi.org/10.3329/dujs.v60i1.10351

    Article  CAS  Google Scholar 

  28. S. Shirzad, R. Sadeghi, Micellization properties and related thermodynamic parameters of aqueous sodium dodecyl sulfate and sodium dodecyl sulfonate solutions in the presence of 1-propanol. Fluid Phase Equilibria J. 377, 1–8 (2014). https://doi.org/10.1016/j.fluid.2014.06.009

    Article  CAS  Google Scholar 

  29. E. Kolesnikova, N. Glukhareva, The influence of an electrolyte on micelle formation in aqueous solutions of sodium monoalkyl sulfosuccinates. Russ. J. Phys. Chem. A 83(12), 2119–2121 (2009). https://doi.org/10.1134/S0036024409120206

    Article  CAS  Google Scholar 

  30. S. Kumar, K. Parikh, Influence of temperature and salt on association and thermodynamic parameters of micellization of a cationic gemini surfactant. J. Appl. Solut. Chem. Model. 1(1), 65–73 (2012). https://doi.org/10.6000/1929-5030.2012.01.01.7

    Article  CAS  Google Scholar 

  31. F. El-Dossoki, E. Gomaa, O. Hamza, Solvation thermodynamic parameters for alkyl benzyl dimethyl ammonium chloride and cetyl trimethyl ammonium chloride surfactants in water and alcoholic-water solvents. J. Chem. Eng. Data. 64(10), 4482–4492 (2019). https://doi.org/10.1021/acs.jced.9b00527

    Article  CAS  Google Scholar 

  32. F.I. El-Dossoki, E.A. Gomaa, O.K. Hamza, Solvation thermodynamic parameters for sodium dodecyl sulfate (SDS) and sodium lauryl ether sulfate (SLES) surfactants in aqueous and alcoholic-aqueous solvents. SN Appl. Sci. 1(8), 0974–0976 (2019)

    Article  Google Scholar 

  33. G.R. Vakili-Nezhaad, A.M. AlAisaee, M.A. AlJahwari, S.S. AlBarwani, Z.K. AlJahwari, Density calculation of ionic liquids. Mater. Phys. Mech. 32(1), 8–13 (2017)

  34. F. El-Dossoki, Volumetric and solvation properties of glycyl-glycine and glycyl-l-leucine in aqueous acetate solutions. J. Solut. Chem. 44(2), 264–279 (2015). https://doi.org/10.1007/s10953-015-0314-4

    Article  CAS  Google Scholar 

  35. F. El-Dossoki, Volumetric thermodynamic properties of aqueous binary mixtures of some alkanols at different temperatures. Int. Res. J. Pure Appl. Chem. 10(3), 1–18 (2016). https://doi.org/10.9734/IRJPAC/2016/21863

    Article  CAS  Google Scholar 

  36. F. El-Dossoki, E. Gomaa, Excess refractive index, polarizability, polarization and the molar volume of some mixed solvents. J. Indian Chem. Soc. 82(3), 219–224 (2005)

    Google Scholar 

  37. F.I. El-dossoki, refractive index and density measurements for selected binary protic-protic, aprotic-aprotic, and aprotic-protic systems. J. Chinese Chem. Soc. 549, 1129–1137 (2007)

    Article  Google Scholar 

  38. N. Hosny, M. Badr, F. El-Dossoki, Doped poly(m-phenylenediamine-co-aniline) (P(mPD-co-ANI)): synthesis, characterization, physical properties, and precursor for CuO nanoparticles. Polym. Plast. Technol. Eng. 57(14), 1485–1495 (2018)

    Article  CAS  Google Scholar 

  39. D. Lide, CRC Handbook of Chemistry and Physics, 76th edn. (CRC Press, Boca Raton, FL, 1995)

    Google Scholar 

  40. M.A. Abdul-Raheim, M.E.-S. Abdel-Raouf, N.E.-S. Maysour, A.F. El-Kafrawy, A.Z. Mehany et al., Some sugar fatty ester ethoxylates as demulsifiers for petroleum sludge. J. Surf. Deterg. 16, 377–387 (2013)

    Article  CAS  Google Scholar 

  41. R. Wadi, R. Kakkar, Partial molar volumes and viscosities of some monovalent ions in ethanolamine and water-ethanolamine mixtures at 29815 K. Indian J. Chem. Sect. A Inorg. Bio-inorg. Phys. 39, 598–602 (2000)

  42. Z. Ul Haq, N. Rehman, F. Ali, N. Khan, H. Ullah, Physicochemical properties of cationic surfactant cetyltrImethylammonium bromide in the presence of electrolyte. J. Mater. Environ. Sci. 8, 1029–1038 (2017)

    CAS  Google Scholar 

  43. P. Walden, Über Den ZusammenhangZwischen Dem Grenzleitvermögen λ∞ Der BinärenElektrolyteInNichtwässerigenLösungsmitteln Und Der Viskosität η∞ Der Letzteren λ ∞• η ∞= Konst. Zeitschrift für Anorg und Allg Chemie. 113(1), 85–97 (1920)

    Article  CAS  Google Scholar 

  44. F. Millero, Apparent molal expansibilities of some divalent chlorides in aqueous solution at 25.deg. J. Phys. Chem. 72(13), 4589–4593 (1968)

    Article  CAS  Google Scholar 

  45. E. King, Volume changes for ionization of formic, acetic, and butyric acids and the glycinium ion in aqueous solution at 25.deg. J. Phys. Chem. 73(5), 1220–1232 (1969)

    Article  CAS  Google Scholar 

  46. J. Millero, A. Surdo, C. Shin, The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 C. J. Phys. Chem. 82(7), 784–792 (1978)

    Article  CAS  Google Scholar 

  47. R. Gopal, M. Siddiqi, A Study of Ion-Solvent. J. Phys. Chem. 73(10), 3390–3394 (1968)

    Article  Google Scholar 

  48. A. El-Harakany, M. El-Dessouky, A. Taha, A. Bassiony, Solubilities and thermodynamic functions of transfer of substituted benzoic acids and aliphatic amine derivatives from water to water-sulpholane mixtures at different temperatures. Egypt J. Chem. 45(1), 1–32 (2002)

    CAS  Google Scholar 

  49. E. Mognaschi, L. Laboranti, Association of pure polar liquids: dielectric properties of docosanoic acid. J. Chem. Soc. Faraday Trans. 92(18), 3367–3369 (1996)

    Article  CAS  Google Scholar 

  50. J. Hasted, Aqueous Dielectrics (Chapman and Hall, New York, 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid I. El-Dossoki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Dossoki, F.I., Gomaa, E.A. & Abdelzaher, M.A. Micellization, molal volume and polarizability of benzyl and allyl-methyl imidazolium ionic liquids in aqueous and alcoholic-aqueous solvents. J IRAN CHEM SOC 19, 729–739 (2022). https://doi.org/10.1007/s13738-021-02336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02336-3

Keywords

Navigation