Skip to main content
Log in

Direct determination of metallic impurities in nuclear-grade boron carbide by slurry sampling total reflection X-ray fluorescence spectrometry and ICP atomic emission spectrometry subsequent to ultra-high-pressure sample digestion

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Slurry sampling-TXRF and ultra-high-pressure digestion ICP-OES methods were developed for the direct determination of Ca, Co, Cr, Al, Cu, Fe, Mn, Na, Ni, Ti in different particle size nuclear-grade boron carbide powders. The dispersive effect of polacrylateamine (NH4PAA) was used as a dispersion agent. Different zeta potential values and NH4PAA concentrations could get stable and homogeneous slurries. It was found that pH at 6.0 and NH4PAA 0.5 wt% provided the best conditions. Optimization of the slurry concentration of TXRF was performed for the net elemental intensity of Ca, Ti, Fe, and the internal standard element Ga. Through experimental results, we used the 10 mg·mL−1 as a suitable slurry concentration. The analytical results obtained using TXRF and ultra-high-pressure digestion ICP-OES methods were in good agreement with the recommended method DC-arc-OES. Besides, the detection limit of TXRF and ICP-OES is in the range of 0.1–1.0 μg·g−1 (expect Al and Na) which was lower than the DC-arc-OES method. The reference material of ERM 102 was used to validate the accuracy and get good results. The recovery rates of TXRF are between 83% and 115% for Cu (2.4–25 μg·g−1), Cr (12–234 μg·g−1), Ca (158–211 μg·g−1), Co (2.9–6.5 μg·g−1), Fe (965–1547 μg·g−1), Mn (17–24 μg·g−1), Ni (56–128 μg·g−1), and Ti (12–80 μg·g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Thevenot, Key Eng. Mater. 56–57, 59–88 (1991). https://doi.org/10.4028/www.scientific.net/KEM.56-57.59

  2. L. Shi, Y. Gu, L. Chen, Y. Qian, Z. Yang, J. Ma, Solid. State. Commun. 128(1), 5–7 (2003). https://doi.org/10.1016/s0038-1098(03)00627-6

    Article  CAS  Google Scholar 

  3. S. Lee, J. Mazurowski, G. Ramseyer, P.A. Dowben, J. Appl. Phys. 72(10), 4925–4933 (1992). https://doi.org/10.1063/1.352060

    Article  CAS  Google Scholar 

  4. Astm International C791–19, Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade boron carbide. ASTM International (2019). https://doi.org/10.1520/c0791-11

    Article  Google Scholar 

  5. B. Docekal, J.A.C. Broekaert, T. Graule, P. Tschöpel, G. Tölg, Fresenius J. Anal. Chem. 342(1–2), 113–117 (1992). https://doi.org/10.1007/bf00321704

    Article  CAS  Google Scholar 

  6. J.A.C. Broekaert, C. Lathen, R. Brandt, C. Pilger, D. Pollmann, P. Tschöpel, G. Tölg, Fresenius J. Anal. Chem. 349(1–3), 20–25 (1994). https://doi.org/10.1007/bf00323218

    Article  CAS  Google Scholar 

  7. T. Nakamura, Y. Noike, Y. Koizumi, J. Sato, Analyst 120(1), 89 (1995). https://doi.org/10.1039/an9952000089

    Article  CAS  Google Scholar 

  8. T. Peng, G. Chang, X. Sheng, Z. Jiang, B. Hu, Anal. Chim. Acta. 433(2), 255–262 (2001). https://doi.org/10.1016/s0003-2670(01)00780-2

    Article  CAS  Google Scholar 

  9. U. Schäffer, V. Krivan, Fresenius’ J. Anal. Chem. 371(6), 859–866 (2001). https://doi.org/10.1007/s002160100971

    Article  CAS  Google Scholar 

  10. Z. Wang, J. Zhang, G. Zhang, D. Qiu, P. Yang, J. Anal. Atom. Spectrom. 30(4), 909–915 (2015). https://doi.org/10.1039/c4ja00429a

    Article  CAS  Google Scholar 

  11. P. Barth, J. Hassler, I. Kudrik, V. Krivan, Spectrochim. Acta. B. 62(9), 924–932 (2007). https://doi.org/10.1016/j.sab.2007.03.012

    Article  CAS  Google Scholar 

  12. S.A. Baker, M.J. Dellavecchia, B.W. Smith, J.D. Anal, Chim. Acta. 355(2–3), 113–119 (1997). https://doi.org/10.1016/s0003-2670(97)00449-2

    Article  CAS  Google Scholar 

  13. L. Bonizzoni, A. Galli, M. Gondola, M. Martini, X-Ray Spectrom. 42(4), 262–267 (2013). https://doi.org/10.1002/xrs.2465

    Article  CAS  Google Scholar 

  14. M.A. Amberger, M. Höltig, J.A.C. Broekaert, Spectrochim. Acta. B. 65(2), 152–157 (2010). https://doi.org/10.1016/j.sab.2010.01.001

    Article  CAS  Google Scholar 

  15. R. Fernández-Ruiz, Spectrochim. Acta. B. 64(7), 672–678 (2009). https://doi.org/10.1016/j.sab.2009.05.028

    Article  CAS  Google Scholar 

  16. M.A. Amberger, J.A.C. Broekaert, J. Anal. Atom. Spectrom. 24(11), 1517 (2009). https://doi.org/10.1039/b906417f

    Article  CAS  Google Scholar 

  17. L.S.F. Pereira, M.S.P. Enders, G.D. Iop, P.A. Mello, E.M.M. Flores, J. Anal. Atom. Spectrom. 33(4), 649–657 (2018). https://doi.org/10.1039/c7ja00365j

    Article  CAS  Google Scholar 

  18. C.A. Bizzi, J.S. Barin, E.E. Earcia, J.A. Nóbrega, V.L. Dressler, E.M.M. Flores, Spectrochim. Acta. B. 66(5), 394–398 (2011). https://doi.org/10.1016/j.sab.2011.04.013

    Article  CAS  Google Scholar 

  19. S. Riaño, M. Regadío, K. Binnemans, T. Vander Hoogerstraete, Spectrochim. Acta. B. 124, 109–115 (2016). https://doi.org/10.1016/j.sab.2016.09.001

    Article  CAS  Google Scholar 

  20. I. De La Calle, N. Cabaleiro, V. Romero, I. Lavilla, C. Bendicho, Spectrochim. Acta. B. 90, 23–54 (2013). https://doi.org/10.1016/j.sab.2013.10.001

    Article  CAS  Google Scholar 

  21. R. Müller, Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart (1996)

  22. D. Hellin, W. Fyen, J. Rip, T. Delande, P.W. Mertens, S. De Gendt, C. Vinckier, J. Anal. Atom. Spectrom. 19(12), 1517 (2004). https://doi.org/10.1039/b410643a

    Article  CAS  Google Scholar 

  23. R. Klockenkämper, A. Von Bohlen, Spectrochim. Acta. B. 44(5), 461–469 (1989). https://doi.org/10.1016/0584-8547(89)80051-5

    Article  Google Scholar 

  24. T. Kántor, J. Hassler, O. Förster, Microchim. Acta 156(3–4), 231–243 (2006). https://doi.org/10.1007/s00604-006-0636-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Junjie Li for his valuable guidance in the preparation of this manuscript. The financial support of the NSFC (41973051) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Yuan or Shouhua Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Feng, S., Cui, J. et al. Direct determination of metallic impurities in nuclear-grade boron carbide by slurry sampling total reflection X-ray fluorescence spectrometry and ICP atomic emission spectrometry subsequent to ultra-high-pressure sample digestion. J IRAN CHEM SOC 19, 589–597 (2022). https://doi.org/10.1007/s13738-021-02332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02332-7

Keywords

Navigation