Skip to main content
Log in

Intensification of tellurium separation through the multistage bulk liquid membrane technique from nitric acid leaching liquor of Copper anode slime

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this study, selective separation of tellurium from nitric acid leaching liquor obtained from Sarcheshmeh Copper anode slime was performed by using a bulk liquid membrane (BLM). To find the optimum operational conditions, the experiments were designed using the Taguchi method. The effect of TBP concentration in the liquid membrane phase and hydrochloric acid concentration in the donor and acceptor phases was investigated on selective extraction of tellurium. The maximum selectivity of tellurium relative to selenium and Copper was obtained equal to 10.87 and 70.05, respectively, in 4 M hydrochloric acid of the donor phase, 30% (v/v) TBP in kerosene, and the 0.5 M hydrochloric acid in acceptor phase. At these conditions, the transfer percentage (TF%) of tellurium was obtained equal to 14.04%. Moreover, to increase the selectivity and TF% of Te, the time effect and the number of separation stages (BLM) were investigated at the aforementioned optimum conditions. The results showed that TF% and the selectivity of Te to Se increase to 33.93% and 15.5, respectively, by increasing the time up to 240 min. Furthermore, using multistage BLM leads to an increase in the selectivity of tellurium than selenium and Copper up to 2549 and 4530.6, respectively, after using only four separation stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a :

Ions in the acceptor phase

BLM:

Bulk liquid membrane

d :

Ions in the donor phase

DOE:

Design of experiments

LM:

Liquid membrane phase

m :

Ions in the membrane phase

MBLM:

Multistage bulk liquid membrane

na :

Order of back-extraction reaction

nd :

Order of extraction reaction

SF:

Selectivity factor

S/N:

Signal to noise ratio

TF%:

Transfer percentage

TBP:

Tributyl phosphate

C a, t :

Concentration of the solute in the acceptor phase at time t (mol m3)

C a i :

Concentration of the solute i in acceptor phase (mg L3)

C d i :

Concentration of the solute i in the donor phase (mg L3)

C d,in :

Concentration of the solute in the donor phase at initial time (mol m−3)

\(C_{{{\text{m}}i}}\) :

Concentration of the solute i in the membrane phase (mg L−3)

\(k_{1}\) :

Rate constants of extraction process (min1)

\(k_{2}\) :

Rate constants of back-extraction process (min1)

n :

Number of experiments

W i :

Weighting factor

y i :

Weighted response of the ith experiment

References

  1. Z. Albaraka, Carrier-mediated liquid membrane systems for lead (II) ion separations. Chem. Pap. 74, 77–88 (2020). https://doi.org/10.1007/s11696-019-00868-w

    Article  CAS  Google Scholar 

  2. S.A. Allahyari, A. Charkhi, S.J. Ahmadi, A. Minuchehr, Modeling and experimental validation of the steady-state counteractive facilitated transport of Th(IV) and hydrogen ions through hollow-fiber renewal liquid membrane. Chem. Pap. 75, 325–336 (2021). https://doi.org/10.1007/s11696-020-01300-4

    Article  CAS  Google Scholar 

  3. S.A. Allahyari, S.J. Ahmadi, A. Minuchehr, A. Charkhi, Th (IV) recovery from aqueous waste via hollow fiber renewal liquid membrane (HFRLM) in recycling mode: modelling and experimental validation. RSC Adv. 7, 7413–7423 (2017). https://doi.org/10.1039/C6RA26463H

    Article  CAS  Google Scholar 

  4. S.A. Allahyari, A. Minuchehr, S.J. Ahmadi, A. Charkhi, Th (IV) transport from nitrate media through hollow fiber renewal liquid membrane. J. Membr. Sci. 520, 374–384 (2016). https://doi.org/10.1016/j.memsci.2016.08.009

    Article  CAS  Google Scholar 

  5. A. Amer, Processing of Copper anodic-slimes for extraction of valuable metals. Waste Manag. 23, 763–770 (2003). https://doi.org/10.1016/S0956-053X(03)00066-7

    Article  CAS  PubMed  Google Scholar 

  6. Chakrabarty K (2010) Liquid Membrane Based Technology for Removel of Pollutants from Wastewater. Dissertation. http://gyan.iitg.ernet.in/handle/123456789/294

  7. M.R. Chowdhury, S.K. Sanyal, Separation by solvent extraction of tellurium (IV) and selenium (IV) with tri-n butyl phosphate: some mechanistic aspects. Hydrometallurgy 32, 189–200 (1993). https://doi.org/10.1016/0304-386X(93)90023-7

    Article  CAS  Google Scholar 

  8. M.R. Chowdhury, S.K. Sanyal, Diluent effect on extraction of tellurium (IV) and selenium (IV) by tri-n butyl phosphate. Hydrometallurgy 34, 319–330 (1994). https://doi.org/10.1016/0304-386X(94)90069-8

    Article  CAS  Google Scholar 

  9. R. Davarkhah, E.F. Asl, M. Samadfam, M. Tavasoli, P. Zaheri, M. Shamsipur, Selective separation of yttrium (III) through a liquid membrane system using 2-thenoyltrifluoroacetone as an extractant carrier. Chem. Pap. 72, 1487–1497 (2018). https://doi.org/10.1007/s11696-018-0407-9

    Article  CAS  Google Scholar 

  10. M. Dehghanpoor, M. Zivdar, M. Torabi, Extraction of copper and gold from anode slime of Sarcheshmeh Copper Complex. J. S. Afr. Inst. Min. Metall. 116, 1153–1157 (2016). https://doi.org/10.17159/2411-9717/2016/v116n12a9

    Article  CAS  Google Scholar 

  11. F.A. Devillanova, W.-W. Du Mont, Handbook of Chalcogen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium, vol. 1 (Royal Society of Chemistry, UK, 2013)

    Google Scholar 

  12. M. Fernández, M. Segarra, F. Espiell, Selective leaching of arsenic and antimony contained in the anode slimes from Copper refining. Hydrometallurgy 41, 255–267 (1996). https://doi.org/10.1016/0304-386X(95)00061-K

    Article  Google Scholar 

  13. J. Hait, R. Jana, S. Sanyal, Processing of Copper electrorefining anode slime: a review. Miner. Process. Extr. Metall. 118, 240–252 (2009). https://doi.org/10.1179/174328509X431463

    Article  CAS  Google Scholar 

  14. Y.-C. Hoh, C.-C. Chang, W.-L. Cheng, I.-S. Shaw, The separation of selenium from Tellurium in hydrochloric acid media by solvent extraction with tri-butyl phosphate. Hydrometallurgy 9, 381–392 (1983). https://doi.org/10.1016/0304-386X(83)90032-4

    Article  CAS  Google Scholar 

  15. M. Khanlarian, F. Rashchi, M. Saba, A modified sulfation-roasting-leaching process for recovering Se, Cu, and Ag from Copper anode slimes at a lower temperature. J. Environ. Manag. 235, 303–309 (2019). https://doi.org/10.1016/j.jenvman.2019.01.079

    Article  CAS  Google Scholar 

  16. A. Kundu, B. SenGupta, M. Hashim, G. Redzwan, Taguchi optimisation approach for chromium removal in a rotating packed bed contractor. J. Taiwan Inst. Chem. Eng. 57, 91–97 (2015). https://doi.org/10.1016/j.jtice.2015.05.022

    Article  CAS  Google Scholar 

  17. D. Li, Y. Guo, T. Deng, Y.-W. Chen, N. Belzile, Solvent extraction of tellurium from chloride solutions using tri-n-butyl phosphate: conditions and thermodynamic data. Sci. World J. (2014). https://doi.org/10.1155/2014/458705

    Article  Google Scholar 

  18. P. Liang, W. Liming, G. Wei, Z. Nan, Study on a novel disphase supplying supported liquid membrane for transport behavior of divalent nickel ions. Chin. J. Chem. Eng. 20, 633–640 (2012). https://doi.org/10.1016/S1004-9541(11)60228-0

    Article  Google Scholar 

  19. P. Liang, W. Liming, F. Xinglong, Separation of Eu3+ using a novel dispersion combined liquid membrane with P507 in kerosene as the carrier. Chin. J. Chem. Eng. 19, 33–39 (2011). https://doi.org/10.1016/S1004-9541(09)60173-7

    Article  Google Scholar 

  20. J. Lin, C. Lin, The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. Int. J. Mach. Tool Manuf. 42, 237–244 (2002). https://doi.org/10.1016/S0890-6955(01)00107-9

    Article  Google Scholar 

  21. D. Lu, Y. Chang, H. Yang, X. Feng, Sequential removal of selenium and tellurium from Copper anode slime with high nickel content. Trans. Nonferrous Met. Soc. 25, 1307–1314 (2015). https://doi.org/10.1016/S1003-6326(15)63729-3

    Article  CAS  Google Scholar 

  22. A.A. Mhaske, P.M. Dhadke, Separation of Te (IV) and Se (IV) by extraction with Cyanex 925. Sep. Sci. Technol. 38, 3575–3589 (2003). https://doi.org/10.1081/SS-120023418

    Article  CAS  Google Scholar 

  23. S.A. Milani, A. Charkhi, S. Eshghi, Selective transport of zirconium (IV) and niobium (V) from hydrochloric media through a bulk liquid membrane. J. Iran. Chem. Soc. 15, 1821–1829 (2018). https://doi.org/10.1007/s13738-018-1379-y

    Article  CAS  Google Scholar 

  24. S.A. Milani, F. Zahakifar, A. Charkhi, Continuous bulk liquid membrane technique for thorium transport: modeling and experimental validation. J. Iran. Chem. Soc. 16, 455–464 (2019). https://doi.org/10.1007/s13738-018-1516-7

    Article  CAS  Google Scholar 

  25. B. Mokhtari, K. Pourabdollah, Emulsion liquid membrane for selective extraction of Bi (III) Chinese. J. Chem. Eng. 23, 641–645 (2015). https://doi.org/10.1016/j.cjche.2014.06.035

    Article  CAS  Google Scholar 

  26. C. Onac, A. Kaya, D. Ataman, N.A. Gunduz, H.K. Alpoguz, The removal of Cr (VI) through polymeric supported liquid membrane by using calix [4] arene as a carrier. Chin. J. Chem. Eng. 27, 85–91 (2019). https://doi.org/10.1016/j.cjche.2018.01.029

    Article  CAS  Google Scholar 

  27. N. Othman, N.F.M. Noah, L.Y. Shu, Z.-Y. Ooi, N. Jusoh, M. Idroas, M. Goto, Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process. Chin. J. Chem. Eng. 25, 45–52 (2017). https://doi.org/10.1016/j.cjche.2016.06.002

    Article  CAS  Google Scholar 

  28. H. Pasdar, B. Hedayati Saghavaz, M. Masoumi, A simple method for the recovery of selenium from Copper anode slime sample using alkaline roasting process. Int. J. New Chem. 6, 143–150 (2019). https://doi.org/10.22034/IJNC.2019.106292.1050

    Article  CAS  Google Scholar 

  29. R. Ranjbar, M. Naderi, H. Omidvar, G. Amoabediny, Gold recovery from Copper anode slime by means of magnetite nanoparticles (MNPs). Hydrometallurgy 143, 54–59 (2014). https://doi.org/10.1016/j.hydromet.2014.01.007

    Article  CAS  Google Scholar 

  30. B.M. Sargar, S.V. Mahamuni, M.A. Anuse, Sequential separation of selenium (IV) from tellurium (IV) by solvent extraction with Nn-octylaniline: analysis of real samples. J. Saudi Chem. Soc. 15, 177–185 (2011). https://doi.org/10.1016/j.jscs.2010.08.001

    Article  CAS  Google Scholar 

  31. A. Sattari, M. Kavousi, E.K. Alamdari, Solvent extraction of selenium in hydrochloric acid media by using triisobutyl phosphate and triisobutyl phosphate/dodecanol mixture. Trans. Ind. Inst. Met. 70, 1103–1109 (2017). https://doi.org/10.1007/s12666-016-0904-x

    Article  CAS  Google Scholar 

  32. A. Shabani, A. Hoseinpur, H. Yoozbashizadeh, J.V. Khaki, As, Sb, and Fe removal from industrial Copper electrolyte by solvent displacement crystallisation technique. Can. Metall. Q. 58, 253–261 (2019). https://doi.org/10.1080/00084433.2018.1549346

    Article  CAS  Google Scholar 

  33. S. Shafiee, H.A. Ahangar, A. Saffar, Taguchi method optimization for synthesis of Fe3O4@ chitosan/Tragacanth Gum nanocomposite as a drug delivery system. Carbohydr. Polym. 222, 114982 (2019). https://doi.org/10.1016/j.carbpol.2019.114982

    Article  CAS  PubMed  Google Scholar 

  34. B. Shakib, R. Torkaman, M. Torab-Mostaedi, M. Asadollahzadeh, Exact hydrodynamic description of pilot plant Oldshue–Rushton contactor: a case study with the introduction of selenium and tellurium into reaction system. Int. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1781103

    Article  Google Scholar 

  35. M. Shamsipur, R. Davarkhah, A.R. Khanchi, Facilitated transport of uranium (VI) across a bulk liquid membrane containing thenoyltrifluoroacetone in the presence of crown ethers as synergistic agents. Sep. Purif. Technol. 71, 63–69 (2010). https://doi.org/10.1016/j.seppur.2009.11.003

    Article  CAS  Google Scholar 

  36. W.D. Xing, M.S. Lee, Development of a hydrometallurgical process for the recovery of gold and silver powders from anode slime containing copper, nickel, tin, and zinc. Gold Bull. 52, 69–77 (2019). https://doi.org/10.1007/s13404-019-00254-0

    Article  CAS  Google Scholar 

  37. F. Zahakifar, A. Charkhi, M. Torab-Mostaedi, R. Davarkhah, Kinetic study of uranium transport via a bulk liquid membrane containing Alamine 336 as a carrier. J. Radioanal. Nucl. Chem. 316, 247–255 (2018). https://doi.org/10.1007/s10967-018-5739-y

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sareh Ammari Allahyari.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdani Ahmad Abadi, N., Kheradmand Saadi, M., Charkhi, A. et al. Intensification of tellurium separation through the multistage bulk liquid membrane technique from nitric acid leaching liquor of Copper anode slime. J IRAN CHEM SOC 19, 413–421 (2022). https://doi.org/10.1007/s13738-021-02311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02311-y

Keywords

Navigation