Skip to main content
Log in

Synthesis, characterization, interaction with anionic dye, biodegradability, and antimicrobial activity of cationic surfactants: quaternary hydrazinium derivatives

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A novel cationic surfactant type of N'alkyl N,'N'dimethyl-4-morpholino-4-oxobutanoylhydrazinium iodide (10a–12a) and N'alkyl N', N'dimethyl-4-piperidino-4-oxobutanoylhydrazinium iodide (10b–12b) of quaternary hydrazinium moieties in hydrophilic parts was synthesized. These quaternary hydrazinium surfactants were obtained using a two-step reaction scheme, starting from ring opening of succinic anhydride with a base (morpholine, piperidine), followed by ammonolysis with hydrazine hydrate, then alkylation of the amino group with alkyl bromides (RBr) that have different hydrophobic chain lengths (R, C12H25, C14H29, and C16H37), and ending with the quaternarization of the secondary amino group by two moles of methyl iodide. The chemical composition of the surfactants was analyzed by FTIR, 1HNMR, mass spectroscopy, and elemental analysis. A variety of surface-active characteristics were achieved by surface calculations, including CMC, γcmc, CMC/C20, Γmax, pC20, Amin, and Πcmc. These surface characteristics and foam stability rely on the nature of the hydrophobic chain. Preliminary results showed that an upgrade throughout the CH2 group in the fatty chain and the morpholine or piperidine ring lowers the CMC and increases the foaming capacity and stability of the quaternary hydrazinium surfactants. Anionic dye (Acid BG) interactions with 12b surfactant (as an example) were studied using the spectrophotometric technique and the binding constant (170.64 dm3.mol−1) was determined. The results indicate solubilization and binding took place at a large scale. Furthermore, considerable biodegradation of cationic surfactants was observed (68–87%). The antimicrobial activity of these surfactants has also been observed with the minimum inhibitory concentration (MIC) and the size of inhibited growth zone. The smallest MICs were found in 12a (64 µg/mL) and 12b (32 µg/mL) surfactants, indicating the highest antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Węgrzyńska, J. Chlebicki, I. Maliszewska, Preparation, surface-active properties and antimicrobial activities of bis(ester quaternary ammonium) salts. J. Surfactants Deterg. 10(2), 109–116 (2007)

    Article  Google Scholar 

  2. L. Wang, H. Qin, L. Ding, S. Huo, Q. Deng, B. Zhao, L. Meng, T. Yan, Preparation of a novel class of cationic gemini imidazolium surfactants containing amide groups as the spacer: their surface properties and antimicrobial activity. J. Surfactants Deterg. 17(6), 1099–1106 (2014)

    Article  CAS  Google Scholar 

  3. A. Kanazawa, T. Ikeda, T. Endo, Synthesis and antimicrobial activity of dimethyl- and trimethyl-substituted phosphonium salts with alkyl chains of various lengths. Antimicrob. Agents Chemother. 38(5), 945–952 (1994)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. P. Foley, A. Kermanshahi Pour, E. Beach, J. Zimmerman, Derivation and synthesis of renewable surfactants. Chem. Soc. Rev. 41(4), 1499–1518 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. L. Schramm, E. Stasiuk, D. Marangoni, 2-Surfactants and their applications. Annu. Rep. Prog. Chem. Sect. C: Phys. Chem. 99, 3–48 (2003)

    CAS  Google Scholar 

  6. Y. Guo, Y. Li, B. Zhi, D. Zhang, Y. Liu, Q. Huo, Effect of cationic surfactants on structure and morphology of mesostructured MOFs. RSC Adv. 2(12), 5424 (2012)

    Article  CAS  Google Scholar 

  7. D. Asefi, M. Arami, N.M. Mahmoodi, Electrochemical effect of cationic gemini surfactant and halide salts on corrosion inhibition of low carbon steel in acid medium. Corros. Sci. 52, 794–800 (2010)

    Article  CAS  Google Scholar 

  8. Q. Liu, M. Guo, Z. Nie, J. Yuan, J. Tan, S. Yao, Spacer-mediated synthesis of size-controlled gold nanoparticles using geminis as ligands. Langmuir 24, 1595–1599 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. I. Badea, S. Wettig, R. Verrall, Foldvari, Topical non-invasive gene delivery using gemini nanoparticles in interferon-γ-deficient mice. M Eur. J. Pharm. Biopharm. 65, 414–422 (2007)

    Article  CAS  Google Scholar 

  10. Y. Jiang, Y. Luan, F. Qin, L. Zhao, Z. Li, Catanionic vesicles from an amphiphilic prodrug molecule: a new concept for drug delivery systems. RSC Adv. 2, 6905–6912 (2012)

    Article  CAS  Google Scholar 

  11. L. Perez, A. Pinazo, M.T. Garcia, M. Lozano, A. Manresa, M. Angelet, M.P. Vinardell, M. Mitjans, R. Pons, Infante, M. R. Cationic surfactants from lysine: synthesis, micellization and biological evaluation. Eur. J. Med. Chem. 44, 1884–1892 (2009)

    Article  CAS  PubMed  Google Scholar 

  12. C. Corless, G. Reynolds, N. Graham, R. Perry, T. Gibson, J. Haley, Aqueous ozonation of a quaternary ammonium surfactant. Water Res. 23(11), 1367–1371 (1989)

    Article  CAS  Google Scholar 

  13. S. Giolando, R. Rapaport, R. Larson, T. Federle, M. Stalmans, P. Masscheleyn, Environmental fate and effects of DEEDMAC: a new rapidly biodegradable cationic surfactant for use in fabric softeners. Chemosphere 30(6), 1067–1083 (1995)

    Article  CAS  Google Scholar 

  14. O. Kirk, F. Pedersen, C. Fuglsang, Preparation and properties of a new type of carbohydrate-based cationic surfactant. J. Surfactants Deterg. 1(1), 37–40 (1998)

    Article  CAS  Google Scholar 

  15. T. Tatsumi, W. Zhang, T. Kida, Y. Nakatsuji, D. Ono, T. Takeda, I. Ikeda, Novel hydrolyzable and biodegradable cationic gemini surfactants: 1,3-bis[(acyloxyalkyl)-dimethylammonio]-2-hydroxypropane dichloride. J. Surfactants Deterg. 3(2), 167–172 (2000)

    Article  CAS  Google Scholar 

  16. P.E. Hellberg, Ortho ester-based cleavable cationic surfactants. J. Surf. Deterg. 5, 217 (2002)

    Article  CAS  Google Scholar 

  17. Z. Miao, J. Yang, L. Wang, Y. Liu, L. Zhang, X. Li, L. Peng, Synthesis of biodegradable lauric acid ester quaternary ammonium salt cationic surfactant and its utilization as calico softener. Mater. Lett. 62, 3450 (2008)

    Article  CAS  Google Scholar 

  18. J. Lim, E. Kang, H. Lee, B. Lee, Synthesis and interfacial properties of ethoxylated cationic surfactants derived from n-dodecyl glycidyl ether. J. Ind. Eng. Chem. 22, 75–82 (2015)

    Article  CAS  Google Scholar 

  19. A. Pinazo, M. Manresa, A. Marques, M. Bustelo, M. Espuny, L. Pérez, Amino acid–based surfactants: new antimicrobial agents. Adv. Coll. Interface. Sci. 228, 17–39 (2016)

    Article  CAS  Google Scholar 

  20. E.M. Kandeel, M.R. El-Din, E.E. Badr, M.R. Mishrif, H.G. Nasr Mohamed, Synthesis and evaluation of new anionic Gemini dispersants as oil dispersants to treat crude oil spill pollution. J. Surfactants Deterg. 23(4), 753–770 (2020)

    Article  CAS  Google Scholar 

  21. A. Bhadani, T. Misono, S. Singh, K. Sakai, H. Sakai, M. Abe, Structural diversity, physicochemical properties and application of imidazolium surfactants: recent advances. Adv. Coll. Interface. Sci. 231, 36–58 (2016)

    Article  CAS  Google Scholar 

  22. P. Patial, A. Shaheen, I. Ahmad, Synthesis of ester based cationic Pyridinium Gemini surfactants and appraisal of their surface active properties. J. Surfactants Deterg. 16(1), 49–56 (2012)

    Article  Google Scholar 

  23. A. Bhadani, T. Okano, T. Ogura, T. Misono, K. Sakai, M. Abe, H. Sakai, Structural features and surfactant properties of core–shell type micellar aggregates formed by Gemini piperidinium surfactants. Coll. Surf., A 494, 147–155 (2016)

    Article  CAS  Google Scholar 

  24. B. Cai, X. Li, Y. Yang, J. Dong, Surface properties of gemini surfactants with pyrrolidinium head groups. J Coll Interface Sci 370, 111–116 (2012)

    Article  CAS  Google Scholar 

  25. A. Bhadani, M. Tani, T. Endo, K. Sakai, M. Abe, H. Sakai, New ester based gemini surfactants: the effect of different cationic headgroups on micellization properties and viscosity of aqueous micellar solution. Phys. Chem. Chem. Phys. 17(29), 19474–19483 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. E.E. Badr, Preparation, surface-active properties and antimicrobial activities of cationic surfactants based on morpholine and piperidine. Adv. Appl. Sci. Res. 8(2), 81–89 (2017)

    CAS  Google Scholar 

  27. R. Kamboj, S. Singh, V. Chauhan, Synthesis, characterization and surface properties of N-(2-hydroxyalkyl)-N-(2-hydroxyethyl)imidazolium surfactants. Coll Surf. A: Physicochem Eng. Asp. 441, 233–241 (2014)

    Article  CAS  Google Scholar 

  28. Z.H. Asadov, A.H. Tantawy, I.A. Zarbaliyeva, R.A. Rahimov, Synthesis of new surface-active ammonium-type complexes based on palmitic acid for removing thin petroleum films from water surface. Egypt. J. Pet. 22(2), 261–267 (2013)

    Article  Google Scholar 

  29. W.H. Ansari, N. Fatma, M. Panda, Kabir-ud-Din. , Solubilization of polycyclic aromatic hydrocarbons by novel biodegradable cationic gemini surfactant ethane-1,2-diyl bis(N, N-dimethyl-N-hexadecylammoniumacetoxy) dichloride and its binary mixtures with conventional surfactants. Soft Matter 9(5), 1478 (2013)

    Article  CAS  Google Scholar 

  30. A.R. Tehrani-Bagha, K. Holmberg, Cationic ester-containing gemini surfactants: physical−chemical properties. Langmuir 26(12), 9276–9282 (2010)

    Article  CAS  PubMed  Google Scholar 

  31. J. Hoque, S. Gonuguntla, V. Yarlagadda, V.K. Aswal, J. Haldar, Effect of amide bonds on the self-assembly of gemini surfactants. Phys. Chem. Chem. Phys 16(23), 11279–11288 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. M. Wang, Y. Han, F. Qiao, Y. Wang, Aggregation behavior of a gemini surfactant with a tripeptide spacer. Soft Matter 11(8), 1517–1524 (2015)

    Article  CAS  PubMed  Google Scholar 

  33. E.W. Schmidt, Hydrazine and Its Derivatives Preparation Properties and Applications (Wiley, New York, 1984).

    Google Scholar 

  34. B.N. Sivasankar, S. Govindarajan, Acetate and malonate complexes of cobalt(II), nickel(II) and zinc(II) with hydrazinium cation. J. Therm. Anal. 48(6), 1401–1413 (1997)

    Article  CAS  Google Scholar 

  35. K.C. Patil, J.P. Vittal, C.C. Patel, Syntheses and thermal decompositions of hydrazinium salts. J. Therm. Anal. 26(2), 191–198 (1983)

    Article  CAS  Google Scholar 

  36. A. Ali, F. Nabi, N.A. Malik, S. Tasneem, S. Uzair, Study of micellization of sodium dodecyl sulfate in non-aqueous media containing lauric acid and dimethylsulfoxide. J. Surfactants Deterg. 17(1), 151–160 (2013)

    Article  Google Scholar 

  37. J. Ribe, J. Cegarra, L. Aizpurúa, The influence of ionic surface-active agents on the dyeing of hercosett wool with α-bromoacrylamide dyes. J. Soc. Dyers Colour. 99(12), 374–382 (2008)

    Article  Google Scholar 

  38. A.M. Misselyn-Bauduin, A. Thibaut, J. Grandjean, G. Broze, R. Jérôme, Mixed micelles of anionic−nonionic and anionic−zwitterionic surfactants analyzed by pulsed field gradient NMR. Langmuir 16(10), 4430–4435 (2000)

    Article  CAS  Google Scholar 

  39. J. Falbe, Surfactants in Consumer Products: Theory Technology and Application (Springer, Germany, 2012).

    Google Scholar 

  40. B. Brycki, Z. Dega-Szafran, I. Mirska, Synthesis and antimicrobial activities of some quaternary morpholinium chlorides. Pol. J. Microbiol. 59(1), 49–53 (2010)

    Article  CAS  PubMed  Google Scholar 

  41. M.J. Rosen, Surfactants and Interfacial Phenomena (Wiley-Interscience, 1989).

    Google Scholar 

  42. A. Sokołowski, J. Chlebicki, K.A. Wilk, Adsorption of oligooxypropylenated amines at the aqueous solution—air interface: homologous series of piperidine and morpholine derivatives. Coll. Surf. A: Physicochem. Eng. Asp. 80(2–3), 243–249 (1993)

    Article  Google Scholar 

  43. M.T. Garcia, O. Kaczerewska, I. Ribosa, B. Brycki, P. Materna, M. Drgas, Hydrophilicity and flexibility of the spacer as critical parameters on the aggregation behavior of long alkyl chain cationic Gemini surfactants in aqueous solution. J. Mol. Liq. 230, 453–460 (2017)

    Article  CAS  Google Scholar 

  44. E.M. Lee, R.K. Thomas, J. Penfold, R.C. Ward, Structure of aqueous decyltrimethylammonium bromide solutions at the air water interface studied by the specular reflection of neutrons. J. Phys. Chem. 93(1), 381–388 (1989)

    Article  CAS  Google Scholar 

  45. P.A. Pires, O.A. El Seoud, Surfactants with an amide group “spacer”: Synthesis of 3-(acylaminopropyl)trimethylammonium chlorides and their aggregation in aqueous solutions. J. Coll. Interface Sci. 304(2), 474–485 (2006)

    Article  CAS  Google Scholar 

  46. S. Shapovalov, V. Ponomariov, Interaction of dyes with cationic surfactants in solutions: determination of critical micelle concentration. Int. Lett. Chem. Phys. Astron. 81, 27–34 (2019)

    Article  Google Scholar 

  47. N.A. Al-Omair, Thermodynamic study of interaction between a cationic surfactant and an anionic azo dye in aqueous solution. J. Indian Chem. Soc 93, 1–7 (2016)

    Google Scholar 

  48. H. Akbaş, T. Taner, Spectroscopic studies of interactions between C. I. reactive orange with alkyltrimethylammonium bromide surfactants. Spectrochimica Acta Part A: Mole. Biomole. Spectrosc. 73(1), 150–153 (2009)

    Article  Google Scholar 

  49. M. Sarkar, S. Poddar, Studies on the interaction of surfactants with cationic dye by absorption spectroscopy. J. Coll. Interface Sci. 221(2), 181–185 (2000)

    Article  CAS  Google Scholar 

  50. A.M. Khan, S.S. Shah, A UV-visible study of partitioning of pyrene in an anionic surfactant sodium dodecyl sulfate. J. Dispers. Sci. Technol. 29(10), 1401–1407 (2008)

    Article  CAS  Google Scholar 

  51. E.T. Eter, R.E. Richard, A. David, Biodegradable surfactants derived from corn starch. J Am Oil Chem Soc 51, 486–494 (1974)

    Article  Google Scholar 

  52. T. Balson, M.S.B. Felix, The Biodegradability of Non-Ionic Surfactants Biodegradability of Surfactants (Springer, The Netherlands, 1995), pp. 204–230

    Book  Google Scholar 

  53. D.A. Jaeger, J. Wettstein, A. Zafar, Cleavable quaternary hydrazinium surfactants. Langmuir 14, 1940 (1998)

    Article  CAS  Google Scholar 

  54. K. Kuperkar, J. Modi, K. Patel, Surface-active properties and antimicrobial study of conventional cationic and synthesized symmetrical Gemini surfactants. J. Surfactants Deterg. 15(1), 107–115 (2011)

    Article  Google Scholar 

  55. D. Wieczorek, A. Dobrowolski, K. Staszak, D. Kwaśniewska, P. Dubyk, Synthesis, surface and antimicrobial activity of piperidine-based Sulfobetaines. J. Surfactants Deterg. 20(1), 151–158 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  56. M. Diz, A. Manresa, A. Pinazo, P. Erra, M. Infante, Synthesis, surface active properties and antimicrobial activity of new bis Quaternary ammonium compounds. J Chem Soc, Perkin Trans 2(8), 1871 (1994)

    Article  Google Scholar 

  57. G. Oros, T. Cserháti, E. Forgács, Separation of the strength and selectivity of the microbiological effect of synthetic dyes by spectral mapping technique. Chemosphere 52(1), 185–193 (2003)

    Article  CAS  PubMed  Google Scholar 

  58. J.W. Costerton, K. Cheng, The role of the bacterial cell envelope in antibiotic resistance. J. Antimicrob. Chemother. 1(4), 363–377 (1975)

    Article  CAS  PubMed  Google Scholar 

  59. L. Tavano, M.R. Infante, M.A. Riya, A. Pinazo, M.P. Vinardell, M. Mitjans, M.A. Manresa, L. Perez, Role of aggregate size in the hemolytic and antimicrobial activity of colloidal solutions based on single and gemini surfactants from arginine. Soft Matter 9(1), 306–319 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our appreciation and deep gratitude to Prof. Dr. M.S. Taher (Chemistry Department, Faculty of Science, Al-Azhar University,Nasr City, Cairo , Egypt) for his involvement and valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Entsar. E. Badr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hilal, N.M., Badr, E., Gomaa, E.H. et al. Synthesis, characterization, interaction with anionic dye, biodegradability, and antimicrobial activity of cationic surfactants: quaternary hydrazinium derivatives. J IRAN CHEM SOC 18, 3047–3060 (2021). https://doi.org/10.1007/s13738-021-02247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02247-3

Navigation