Skip to main content
Log in

Effect of preparation method on physicochemical properties of a novel Co–Fe nano catalyst

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The main approach of this study was to investigate the effect of the type of synthesis method on the improvement of catalyst performance in Fischer–Tropsch reaction. For this purpose, a series of the novel catalysts were synthesized using iron and cobalt nitrate salts, tetraethoxysilane and novolac phenolic resin by different method. These catalysts were abbreviated as M1–Co–Fe–novolac/SiO2, M2–Co–Fe–novolac/SiO2, and M3–Co–Fe–novolac/SiO2 and characterized using different techniques. The results of the Brunauer–Emmett–Teller and Fourier transform infrared techniques showed that M2–Co–Fe–novolac/SiO2 catalyst has a higher surface area than the other two ones. This catalyst was analyzed by using X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray, and temperature-programed reduction (TPR) techniques. The XRD results confirmed the appearance of suitable active phases, such as metal phase, carbide, and low oxidation state of metals. Based on TPR results, the lower reduction temperature, compared with similar samples, confirmed the high activity of the M2–Co–Fe–novolac/SiO2 catalyst. Catalytic activity and selectivity for Fischer–Tropsch reaction were investigated in the standard conditions by using catalytic tests. The high conversion percentage of CO indicated high activity of the catalyst. On the other hand, the olefin to paraffin ratio (O/P), which was a criterion for catalytic efficiency in industrial, was also acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Shimura, T. Miyazawa, T. Hanaoka, S. Hirata, J. Mol. Catal. A: Chem. 394, 22–32 (2014)

    Article  CAS  Google Scholar 

  2. K. Klaigaew, C. Samart, C. Chaiya, Y. Yoneyama, N. Tsubaki, P. Reubroycharoen, Chem. Eng. J. 278, 166–173 (2015)

    Article  CAS  Google Scholar 

  3. M.J. Parnian, A.A. Khodadadi, A.T. Najafabadi, Y. Mortazavi, Appl. Catal. A General. 470, 221–231 (2014)

    Article  CAS  Google Scholar 

  4. V.R. Pendyala, G. Jacobs, W. Ma, J.L. Klettlinger, C.H. Yen, B.H. Davis, Chem. Eng. J. 249, 279–284 (2014)

    Article  CAS  Google Scholar 

  5. H. Jahangiri, J. Bennett, P. Mahjoubi, K. Wilson, S. Gu, Catal. Sci. Technol. 4(8), 2210–2229 (2014)

    CAS  Google Scholar 

  6. I.A. Filot, R.A. van Santen, E.J. Hensen, Ang. Chem. Int. Ed. Engl. 53(47), 12746–12750 (2014)

    Article  CAS  Google Scholar 

  7. M.E. Dry, High quality diesel via the Fischer–Tropsch process—a review. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 77(1), 43–50 (2002)

    CAS  Google Scholar 

  8. F.H. Bolder, Energy Fuels 21(3), 1396–1399 (2007)

    Article  CAS  Google Scholar 

  9. B.H. Davis, Ind. Eng. Chem. Res. 46(26), 8938–8945 (2007)

    Article  CAS  Google Scholar 

  10. T. Li, H. Wang, Y. Xiang, Y. Li, Fuel Process. Technol. 118, 117–124 (2014)

    Article  CAS  Google Scholar 

  11. M. Baranak, B. Gürünlü, A. Sarıoğlan, Ö. Ataç, H. Atakül, Catal. Today 207, 57–64 (2013)

    Article  CAS  Google Scholar 

  12. H. Schulz, Catal. Today 228, 113–122 (2014)

    Article  CAS  Google Scholar 

  13. C.G. Visconti, L. Lietti, E. Tronconi, P. Forzatti, R. Zennaro, S. Rossini, Catal. Today 154(3–4), 202–209 (2010)

    Article  CAS  Google Scholar 

  14. A. Tavasoli, M. Trépanier, R.M. Abbaslou, A.K. Dalai, N. Abatzoglou, Fuel Process. Technol. 90(12), 1486–1494 (2009)

    Article  CAS  Google Scholar 

  15. W.T. Ralston, W.C. Liu, S. Alayoglu, G. Melaet, Top. Catal. 61(9–11), 1002–1015 (2018)

    Article  CAS  Google Scholar 

  16. M.R. Hemmati, M. Kazemeini, J. Zarkesh, F. Khorasheh, J. Taiwan Inst. Chem. Eng. 43(5), 704–710 (2012)

    Article  CAS  Google Scholar 

  17. M. Feyzi, M.M. Khodaei, J. Shahmoradi, J. Taiwan Inst. Chem. Eng. 45(2), 452–460 (2014)

    Article  CAS  Google Scholar 

  18. B. Sedighi, M. Feyzi, M. Joshaghani, J. Taiwan Inst. Chem. Eng. 50, 108–114 (2015)

    Article  CAS  Google Scholar 

  19. J.A. Díaz, H. Akhavan, A. Romero, A.M. Garcia-Minguillan, R. Romero, A. Giroir-Fendler, J.L. Valverde, Fuel Process. Technol. 128, 417–424 (2014)

    Article  Google Scholar 

  20. C. Liang, S. Jianyi, Chin. J. Catal. 33, 621–628 (2012)

    Article  Google Scholar 

  21. J.P. den Breejen, J.R. Sietsma, H. Friedrich, J.H. Bitter, K.P. de Jong, J. Catal. 270, 146–152 (2010)

    Article  Google Scholar 

  22. Ø. Borg, P.D. Dietzel, A.I. Spjelkavik, E.Z. Tveten, J.C. Walmsley, S. Diplas, S. Eri, A. Holmen, E. Rytter, J. Catal. 259(2), 161–164 (2008)

    Article  CAS  Google Scholar 

  23. G.L. Bezemer, J.H. Bitter, H.P. Kuipers, H. Oosterbeek, J.E. Holewijn, X. Xu, F. Kapteijn, A.J. van Dillen, K.P. de Jong, J. Am. Chem. Soc. 128(12), 3956–3964 (2006)

    Article  CAS  Google Scholar 

  24. J.P. Den Breejen, P.B. Radstake, G.L. Bezemer, J.H. Bitter, V. Frøseth, A. Holmen, K.D. Jong, J. Am. Chem. Soc. 131(20), 7197–7203 (2009)

    Article  Google Scholar 

  25. Z.J. Wang, S. Skiles, F. Yang, Z. Yan, D.W. Goodman, Catal. Today 181(1), 75–81 (2012)

    Article  CAS  Google Scholar 

  26. S.H. Kang, J.W. Bae, P.S. Prasad, S.J. Park, K.J. Woo, K.W. Jun, Catal. Lett. 130(3–4), 630–636 (2009)

    Article  CAS  Google Scholar 

  27. K. Jothimurugesan, J.G. Goodwin Jr., S.K. Gangwal, J.J. Spivey, Catal. Today 58(4), 335–344 (2000)

    Article  CAS  Google Scholar 

  28. I. Poljansek, M. Krajnc, Acta Chim. Slov. 52(3), 238 (2005)

    Google Scholar 

  29. H. Song, Q. Zhao, X. Zhou, Z. Cao, M. Luo, Fuel 229, 144–150 (2018)

    Article  CAS  Google Scholar 

  30. B. Sedighi, M. Feyzi, M. Joshaghani, RSC Adv. 6(83), 80099–80105 (2016)

    Article  CAS  Google Scholar 

  31. C.W. Tang, C.B. Wang, S.H. Chien, Thermochim. Acta 473(1–2), 68–73 (2008)

    Article  CAS  Google Scholar 

  32. M. Feyzi, M. Joshaghani, S. Nadri, Phys. Chem. Res. 6(2), 399–414 (2018)

    CAS  Google Scholar 

  33. A. Khan, P.G. Smirniotis, J. Mol. Catal. A: Chem. 280, 43–51 (2008)

    Article  CAS  Google Scholar 

  34. T.R. Motjope, H.T. Dlamini, G.R. Hearne, N.J. Coville, Catal. Today 71(3–4), 335–341 (2002)

    Article  CAS  Google Scholar 

  35. S.L. Soled, E. Iglesia, S. Miseo, B.A. DeRites, R.A. Fiato, Top. Catal. 2(1–4), 193–205 (1995)

    Article  CAS  Google Scholar 

  36. F. Fazlollahi, M. Sarkari, A. Zare, A.A. Mirzaei, J. Ind. Eng. Chem. 18, 1223–1232 (2012)

    Article  CAS  Google Scholar 

  37. P. Mohanty, K.K. Pant, J. Parikh, D.K. Sharma, Fuel Process. Technol. 92, 600–608 (2011)

    Article  CAS  Google Scholar 

  38. J. Cheng, T. Song, P. Hu, C.M. Lok, P. Ellis, S. French, J. Catal. 225, 20–28 (2008)

    Article  Google Scholar 

  39. S. Özkara-Aydınoğlu, Ö. Ataç, Ö.F. Gül, Ş. Kınayyiğit, S. Şal, M. Baranak, İ. Boz, Chem. Eng. J. 181, 581–589 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Razi University for the financial support provided for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behnam Sedighi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehsani Nia, M., Sedighi, B. & Joshaghani, M. Effect of preparation method on physicochemical properties of a novel Co–Fe nano catalyst. J IRAN CHEM SOC 18, 2009–2015 (2021). https://doi.org/10.1007/s13738-021-02176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02176-1

Keywords

Navigation