Skip to main content
Log in

l-Arginine complex of copper on modified core–shell magnetic nanoparticles as reusable and organic–inorganic hybrid nanocatalyst for the chemoselective oxidation of organosulfur compounds

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this paper, we report the fabrication and characterization of a stable heterogeneous nanostructure catalyst of copper immobilized on Fe3O4@SiO2@l-Arginine, for the oxidation of sulfides and oxidative coupling of thiols. The prepared nanocatalyst has been characterized by different techniques such as FTIR, XRD, SEM, TEM and TGA. These nanoparticles were the effective catalyst for selective oxidation of sulfides and oxidative coupling of thiols using 30% H2O2. The suggested method offers several prominent advantages such as mild condition, use of magnetically reusable catalyst, simple workup procedure, good to high yields of products and great selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Scheme 3
Scheme 4
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Gao, N. Koshizaki, H. Tokuhisa, E. Koyama, T. Sasaki, J.K. Kim, J. Ryu, D.S. Kim, Y. Shimizu, Highly stable Au nanoparticles with tunable spacing and their potential application in surface plasmon resonance biosensors. Adv. Func. Mater. 20, 78–86 (2010). https://doi.org/10.1002/adfm.200901232

    Article  CAS  Google Scholar 

  2. T.K. Sau, A.L. Rogach, F. Jäckel, T.A. Klar, J. Feldmann, Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 22, 1805–1825 (2010). https://doi.org/10.1002/adma.200902557

    Article  CAS  PubMed  Google Scholar 

  3. D.Y. Wu, X.M. Liu, Y.F. Huang, B. Ren, X. Xu, Z.Q. Tian, Surface catalytic coupling reaction of p-mercaptoaniline linking to silver nanostructures responsible for abnormal SERS enhancement: a DFT study. J. Phys. Chem. C 113, 18212–18222 (2009). https://doi.org/10.1021/jp9050929

    Article  CAS  Google Scholar 

  4. S. Li, S.R. Zhai, Q.D. An, M.H. Li, Y. Song, X.W. Song, Designed synthesis of multifunctional Fe3O4@SiO2–NH2@CS–Co(II) towards efficient oxidation of ethylbenzene. Mater. Res. Bull. 60, 665–673 (2014). https://doi.org/10.1016/j.materresbull.2014.09.042

    Article  CAS  Google Scholar 

  5. J. Zhang, S. Zhai, S. Li, Z. Xiao, Y. Song, Q. An, G. Tian, Pb(II) removal of Fe3O4@SiO2–NH2 core–shell nanomaterials prepared via a controllable sol–gel process. Chem. Eng. J. 215, 461–471 (2013). https://doi.org/10.1016/j.cej.2012.11.043

    Article  CAS  Google Scholar 

  6. Y. Chen, F. Zhang, Y. Fang, X. Zhu, W. Zhen, R. Wang, J. Ma, Phosphotungstic acid containing ionic liquid immobilized on magnetic mesoporous silica rod catalyst for the oxidation of dibenzothiophene with H2O2. Catal. Commun. 38, 54–58 (2013). https://doi.org/10.1016/j.catcom.2013.04.005

    Article  CAS  Google Scholar 

  7. Y. Jiang, C. Guo, H. Xia, I. Mahmood, C. Liu, H. Liu, Magnetic nanoparticles supported ionic liquids for lipase immobilization: enzyme activity in catalyzing esterification. J. Mol. Catal. Enzym. 58, 103–109 (2009). https://doi.org/10.1016/j.molcatb.2008.12.001

    Article  CAS  Google Scholar 

  8. V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Magnetically recoverable nanocatalysts. Chem. Rev. 111, 3036–3075 (2011). https://doi.org/10.1021/cr100230z

    Article  CAS  PubMed  Google Scholar 

  9. J. Wang, B. Xu, H. Sun, G. Song, Palladium nanoparticles supported on functional ionic liquid modified magnetic nanoparticles as recyclable catalyst for room temperature Suzuki reaction. Tetrahedron Lett. 54, 238–241 (2013). https://doi.org/10.1016/j.tetlet.2012.11.009

    Article  CAS  Google Scholar 

  10. B. Tahmasbi, A. Ghorbani-Choghamarani, Magnetic MCM-41 nanoparticles as a support for the immobilization of a palladium organometallic catalyst and its application in C–C coupling reactions. New J. Chem. 43, 14485–14501 (2019). https://doi.org/10.1039/C9NJ02727K

    Article  CAS  Google Scholar 

  11. M. Esmaeilpour, A.R. Sardarian, J. Javidi, Schiff base complex of metal ions supported on superparamagnetic Fe3O4@SiO2 nanoparticles: an efficient, selective and recyclable catalyst for synthesis of 1,1-diacetates from aldehydes under solvent-free conditions. Appl. Catal. A Gen. 445, 359–367 (2012). https://doi.org/10.1016/j.apcata.2012.09.010

    Article  CAS  Google Scholar 

  12. A. Ghorbani-Choghamarani, B. Tahmasbi, N. Noori, S. Faryadi, Pd–S-methylisothiourea supported on magnetic nanoparticles as an efficient and reusable nanocatalyst for Heck and Suzuki reactions. C. R. Chim. 20, 132–139 (2017). https://doi.org/10.1016/j.crci.2016.06.010

    Article  CAS  Google Scholar 

  13. N.T. Phan, H.V. Le, Superparamagnetic nanoparticles-supported phosphine-free palladium catalyst for the Sonogashira coupling reaction. J. Mol. Catal. A: Chem. 334, 130–138 (2011). https://doi.org/10.1016/j.molcata.2010.11.009

    Article  CAS  Google Scholar 

  14. J. Andrez, G. Bozoklu, G. Nocton, J. Pecaut, R. Scopelliti, L. Dubois, M. Mazzanti, Lanthanide(II) complexes supported by N,O-donor tripodal ligands: synthesis, structure, and ligand-dependent redox behavior. Chem. Eur. J. 21, 15188–15200 (2015). https://doi.org/10.1002/chem.201502204

    Article  CAS  PubMed  Google Scholar 

  15. R.N. Baig, R.S. Varma, Organic synthesis via magnetic attraction: benign and sustainable protocols using magnetic nanoferrites. Green Chem. 15, 398–417 (2013). https://doi.org/10.1039/C2GC36455G

    Article  Google Scholar 

  16. K. Azizi, M. Karimi, H.R. Shaterian, A. Heydari, Ultrasound irradiation for the green synthesis of chromenes using l-arginine-functionalized magnetic nanoparticles as a recyclable organocatalyst. RSC Adv. 4, 42220–42225 (2014). https://doi.org/10.1039/C4RA06198E

    Article  CAS  Google Scholar 

  17. M. Nasr-Esfahani, S.J. Hoseini, M. Montazerozohori, R. Mehrabi, H. Nasrabadi, Magnetic Fe3O4 nanoparticles: efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions. J. Mol. Catal. A: Chem. 382, 99–105 (2014). https://doi.org/10.1016/j.molcata.2013.11.010

    Article  CAS  Google Scholar 

  18. A. Ghorbani-Choghamarani, P. Moradi, B. Tahmasbi, Nickel(II) immobilized on dithizone–boehmite nanoparticles: as a highly eicient and recyclable nanocatalyst for the synthesis of polyhydroquinolines and sulfoxidation reaction. J. Iran. Chem. Soc. 16, 511–521 (2019). https://doi.org/10.1007/s13738-018-1526-5

    Article  CAS  Google Scholar 

  19. A. Akdag, T. Webb, S. Worley, Oxidation of thiols to disulfides with monochloro poly(styrenehydantoin) beads. Tetrahedron Lett. 47, 3509–3510 (2006). https://doi.org/10.1016/j.tetlet.2006.03.105

    Article  CAS  Google Scholar 

  20. S. Kumar, S. Verma, S.L. Jain, B. Sain, Thiourea dioxide (TUD): a robust organocatalyst for oxidation of sulfides to sulfoxides with TBHP under mild reaction conditions. Tetrahedron Lett. 52, 3393–3396 (2011). https://doi.org/10.1016/j.tetlet.2011.04.088

    Article  CAS  Google Scholar 

  21. B. Li, A.H. Liu, L.N. He, Z.Z. Yang, J. Gao, K.H. Chen, Iron-catalyzed selective oxidation of sulfides to sulfoxides with the polyethylene glycol/O2 system. Green Chem. 14, 130–135 (2012). https://doi.org/10.1039/C1GC15821J

    Article  CAS  Google Scholar 

  22. R. Ozen, F. Aydin, Oxidation of thiols to disulfides with molecular oxygen in subcritical water. Monatshefte für Chemie/Chem. Mon. Monatsh. Chem. 137, 307–310 (2006). https://doi.org/10.1007/s00706-005-0430-8

    Article  CAS  Google Scholar 

  23. S. Samanta, S. Ray, A.B. Ghosh, P. Biswas, 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz) mediated metal-free mild oxidation of thiols to disulfides in aqueous medium. RSC Adv. 6, 39356–39363 (2016). https://doi.org/10.1039/C6RA01509C

    Article  CAS  Google Scholar 

  24. A. Ghorbani-Choghamarani, M. Hajjami, B. Tahmasbi, N. Noori, Boehmite silica sulfuric acid: as a new acidic material and reusable heterogeneous nanocatalyst for the various organic oxidation reactions. J. Iran. Chem. Soc. 13, 2193–2202 (2016). https://doi.org/10.1007/s13738-016-0937-4

    Article  CAS  Google Scholar 

  25. D. Habibi, M.A. Zolfigol, M. Safaiee, A. Shamsian, A. Ghorbani-Choghamarani, Catalytic oxidation of sulfides to sulfoxides using sodium perborate and/or sodium percarbonate and silica sulfuric acid in the presence of KBr. Catal. Commun. 10, 1257–1260 (2009). https://doi.org/10.1016/j.catcom.2008.12.066

    Article  CAS  Google Scholar 

  26. K.J. Liu, J.H. Deng, J. Yang, S.F. Gong, Y.W. Lin, J.Y. He, Z. Cao, W.M. He, Selective oxidation of (hetero)sulfides with molecular oxygen under clean conditions. Green Chem. 22, 433–438 (2020). https://doi.org/10.1039/c9gc03713f

    Article  CAS  Google Scholar 

  27. M.A. Zolfigol, A. Khazaei, M. Safaiee, M. Mokhlesi, R. Rostamian, M. Bagheri, M. Shiri, H. Gerhardus Kruger, Application of silica vanadic acid as a heterogeneous, selective and highly reusable catalyst for oxidation of Sulfides at room temperature. J. Mol. Catal. A: Chem. 370, 80–86 (2013). https://doi.org/10.1016/j.molcata.2012.12.015

    Article  CAS  Google Scholar 

  28. N. Noori, M. Nikoorazm, A. Ghorbani-Choghamarani, Oxo-vanadium immobilized on l-cysteine-modified MCM-41 as catalyst for the oxidation of sulfides and oxidative coupling of thiols. Microporous Mesoporous Mater. 234, 166–175 (2016). https://doi.org/10.1016/j.micromeso.2016.06.036

    Article  CAS  Google Scholar 

  29. A. Bayat, M. Shakourian-Fard, M.M. Hashemi, Selective oxidation of sulfides to sulfoxides by a molybdate-based catalyst using 30% hydrogen peroxide. Catal. Commun. 52, 16–21 (2014). https://doi.org/10.1016/j.catcom.2014.03.026

    Article  CAS  Google Scholar 

  30. Y.L. Hu, X.B. Liu, D. Fang, Efficient and convenient oxidation of sulfides to sulfones using H2O2 catalyzed by V2O5 in ionic liquid [C12mim][HSO4]. Catal. Sci. Technol. 4, 38–42 (2014). https://doi.org/10.1039/C3CY00719G

    Article  CAS  Google Scholar 

  31. M. Nikoorazm, A. Ghorbani-Choghamarani, N. Noori, Preparation and characterization of functionalized Cu(II) Schiff base complex on mesoporous MCM-41 and its application as effective catalyst for the oxidation of sulfides and oxidative coupling of thiols. J. Porous Mater. 22, 877–885 (2015). https://doi.org/10.1007/s10934-015-9961-5

    Article  CAS  Google Scholar 

  32. B. Atashkar, A. Rostami, H. Gholami, B. Tahmasbi, Magnetic nanoparticles Fe3O4-supported guanidine as an efficient nanocatalyst for the synthesis of 2H-indazolo[2,1-b]phthalazine-triones under solvent-free conditions. Res. Chem. Intermed. 41, 3675–3681 (2015). https://doi.org/10.1007/s11164-013-1480-x

    Article  CAS  Google Scholar 

  33. B. Tahmasbi, A. Ghorbani-Choghamarani, First report of the direct supporting of palladium–arginine complex on boehmite nanoparticles and application in the synthesis of 5-substituted tetrazoles. Appl. Organomet. Chem. 31, e3644 (2017). https://doi.org/10.1002/aoc.3644

    Article  CAS  Google Scholar 

  34. M. Nikoorazm, N. Noori, S. Faryadi, B. Tahmasbi, A palladium complex immobilized onto mesoporous silica: a highly efficient and reusable catalytic system for carbon–carbon bond formation and anilines synthesis. Transit. Met. Chem. 42, 469–481 (2017). https://doi.org/10.1007/s11243-017-0151-y

    Article  CAS  Google Scholar 

  35. P. Moradi, M. Hajjami, B. Tahmasbi, Fabricated copper catalyst on biochar nanoparticles for the synthesis of tetrazoles as antimicrobial agents. Polyhedron 175, 114169 (2020). https://doi.org/10.1016/j.poly.2019.114169

    Article  CAS  Google Scholar 

  36. L. Shiri, B. Tahmasbi, Tribromide ion immobilized on magnetic nanoparticles as an efficient catalyst for the rapid and chemoselective oxidation of sulfides to sulfoxides. Phosphorus, Sulfur Silicon Relat. Elem. 192, 53–57 (2017). https://doi.org/10.1080/10426507.2016.1224878

    Article  CAS  Google Scholar 

  37. A. Ghorbani-Choghamarani, B. Tahmasbi, R.H.E. Hudson, A. Heidari, Supported organometallic palladium catalyst into mesoporous channels of magnetic MCM-41 nanoparticles for phosphine-free C–C coupling reactions. Microporous Mesoporous Mater. 284, 366–377 (2019). https://doi.org/10.1016/j.micromeso.2019.04.061

    Article  CAS  Google Scholar 

  38. C. Han, Z. Li, W. Li, S. Chou, S. Dou, Controlled synthesis of copper telluride nanostructures for long-cycling anodes in lithium ion batteries. J. Mater. Chem. A 2, 11683–11690 (2014). https://doi.org/10.1039/C4TA01579G

    Article  CAS  Google Scholar 

  39. Q. Li, S.W. Zhang, Y. Zhang, C. Chen, Magnetic properties in a partially oxidized nanocomposite of Cu–CuCl. Nanotechnology 17, 4981 (2006). https://doi.org/10.1088/0957-4484/17/19/034

    Article  CAS  Google Scholar 

  40. M. Nikoorazm, A. Ghorbani-Choghamarani, A. Panahi, B. Tahmasbi, N. Noori, Pd(0)-Schiff-base@MCM-41 as high-efficient and reusable catalyst for C–C coupling reactions. J. Iran. Chem. Soc. 15, 181–189 (2018). https://doi.org/10.1007/s13738-017-1222-x

    Article  CAS  Google Scholar 

  41. B. Tahmasbi, A. Ghorbani-Choghamarani, P. Moradi, Palladium fabricated on boehmite as an organic–inorganic hybrid nanocatalyst for C–C cross coupling and homoselective cycloaddition reactions. New J. Chem. 44, 3717–3727 (2020). https://doi.org/10.1039/c9nj06129k

    Article  CAS  Google Scholar 

  42. A. Ghorbani-Choghamaranai, P. Moradi, B. Tahmasbi, Modification of boehmite nanoparticles with Adenine for the immobilization of Cu(II) as organic–inorganic hybrid nanocatalyst in organic reactions. Polyhedron 163, 98–107 (2019). https://doi.org/10.1016/j.poly.2019.02.004

    Article  CAS  Google Scholar 

  43. P. Moradi, M. Hajjami, F. Valizadeh-Kakhki, Biochar as heterogeneous support for immobilization of Pd as efficient and reusable biocatalyst in C–C coupling reactions. Appl. Organomet. Chem. 33, e5205 (2019). https://doi.org/10.1002/aoc.5205

    Article  CAS  Google Scholar 

  44. M. Nikoorazm, Z. Rezaei, B. Tahmasbi, Two Schif-base complexes of copper and zirconium oxide supported on mesoporous MCM-41 as an organic–inorganic hybrid catalysts in the chemo and homoselective oxidation of sulfides and synthesis of tetrazoles. J. Porous Mater. 27, 671–689 (2020). https://doi.org/10.1007/s10934-019-00835-6

    Article  CAS  Google Scholar 

  45. S. Hussain, D. Talukdar, S.K. Bharadwaj, M.K. Chaudhuri, VO2F(dmpz)2: a new catalyst for selective oxidation of organic sulfides to sulfoxides with H2O2. Tetrahedron Lett. 53, 6512–6515 (2012). https://doi.org/10.1016/j.tetlet.2012.09.067

    Article  CAS  Google Scholar 

  46. X.F. Wu, A general and selective zinc-catalyzed oxidation of sulfides to sulfoxides. Tetrahedron Lett. 53, 4328–4331 (2012). https://doi.org/10.1016/j.tetlet.2012.06.003

    Article  CAS  Google Scholar 

  47. A. Shaabani, A.H. Rezayan, Silica sulfuric acid promoted selective oxidation of sulfides to sulfoxides or sulfones in the presence of aqueous H2O2. Catal. Commun. 8, 1112–1116 (2007). https://doi.org/10.1016/j.catcom.2006.10.033

    Article  CAS  Google Scholar 

  48. M. Hajjami, L. Shiri, A. Jahanbakhshi, Zirconium oxide complex-functionalized MCM-41 nanostructure: an efficient and reusable mesoporous catalyst for oxidation of sulfides and oxidative coupling of thiols using hydrogen peroxide. Appl. Organomet. Chem. 29, 668–673 (2015). https://doi.org/10.1002/aoc.3348

    Article  CAS  Google Scholar 

  49. S.M. Islam, A.S. Roy, P. Mondal, K. Tuhina, M. Mobarak, J. Mondal, Selective oxidation of sulfides and oxidative bromination of organic substrates catalyzed by polymer anchored Cu(II) complex. Tetrahedron Lett. 53, 127–131 (2012). https://doi.org/10.1016/j.tetlet.2011.10.138

    Article  CAS  Google Scholar 

  50. B. Karimi, D. Zareyee, Selective, metal-free oxidation of sulfides to sulfoxides Using 30% hydrogen peroxide catalyzed with N-bromosuccinimide (NBS) under neutral buffered reaction conditions. J. Iran. Chem. Soc. 5, S103–S107 (2008). https://doi.org/10.1007/BF03246497

    Article  CAS  Google Scholar 

  51. J. Zhang, T. Jiang, Y. Mai, X. Wang, J. Chen, B. Liao, Selective catalytic oxidation of sulfides to sulfoxides or sulfones over amorphous Nb2O5/AC catalysts in aqueous phase at room temperature. Catal. Commun. 127, 10–14 (2019). https://doi.org/10.1016/j.catcom.2019.04.013

    Article  CAS  Google Scholar 

  52. M. Safaiee, M. Moeinimehr, M.A. Zolfigol, Pyridiniumporphyrazinato oxo-vanadium tribromomethanide as a new source of Br+ catalyst for the chemo and homoselective oxidation of sulfides and benzylic alcohols. Polyhedron 170, 138–150 (2019). https://doi.org/10.1016/j.poly.2019.05.007

    Article  CAS  Google Scholar 

  53. A. Ghorbani-Choghamarani, M. Nikoorazm, H. Goudarziafshar, B. Tahmasbi, An efficient and new method on the oxidative coupling of thiols under mild and heterogeneous conditions. Bull. Korean Chem. Soc. 40, 1388–1390 (2009). https://doi.org/10.1002/chin.200945034

    Article  Google Scholar 

  54. M. Hajjami, Z. Shirvandi, Z. Yousofvand, Zr(IV)-ninhydrin supported MCM-41 and MCM-48 as novel nanoreactor catalysts for the oxidation of sulfides to sulfoxides and thiols to disulfides. J. Porous Mater. 24, 1461–1472 (2017). https://doi.org/10.1007/s10934-017-0386-1

    Article  CAS  Google Scholar 

  55. M. Nikoorazm, A. Ghorbani-Choghamarani, H. Mahdavi, S.M. Esmaeili, Efficient oxidative coupling of thiols and oxidation of sulfides using UHP in the presence of Ni or Cd salen complexes immobilized on MCM-41 mesoporous as novel and recoverable nanocatalysts. Microporous Mesoporous Mater. 211, 174–181 (2015). https://doi.org/10.1016/j.micromeso.2015.03.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research facilities of Ilam University, Ilam, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Nikoorazm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikoorazm, M., Moradi, P., Noori, N. et al. l-Arginine complex of copper on modified core–shell magnetic nanoparticles as reusable and organic–inorganic hybrid nanocatalyst for the chemoselective oxidation of organosulfur compounds. J IRAN CHEM SOC 18, 467–478 (2021). https://doi.org/10.1007/s13738-020-02040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02040-8

Keywords

Navigation