Skip to main content
Log in

Nickel(II) immobilized on dithizone–boehmite nanoparticles: as a highly efficient and recyclable nanocatalyst for the synthesis of polyhydroquinolines and sulfoxidation reaction

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, in the first stage, boehmite nanoparticles were easily fabricated via addition of NaOH solution to a solution of Al(NO3)3.9H2O at room temperature in water. Then, nickel–dithizone catalyst was supported on boehmite nanoparticles (Ni-dithizone@boehmite). Ni-dithizone@boehmite is a low-cost, nontoxic, and recoverable catalyst, which provides an environment friendly reaction conditions. In the second stage, catalytic activity of this catalyst was studied in the synthesis of polyhydroquinoline derivatives and selective oxidation of sulfides to sulfoxides. The reactions not require very high temperatures or inert atmosphere. The developed heterogeneous catalyst could be easily separated by centrifugation and recycled for several runs without leaching of Nickel from the surface of the catalyst or significant loss of its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Fig. 4

Similar content being viewed by others

References

  1. D. Wang, D. Astruc, Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 114, 6949–6985 (2014). https://doi.org/10.1021/cr500134h

    Article  CAS  PubMed  Google Scholar 

  2. D. Astruc, F. Lu, J.R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44, 7852–7872 (2005). https://doi.org/10.1002/anie.200500766

    Article  CAS  Google Scholar 

  3. B. Tahmasbi, A. Ghorbani-Choghamarani, Pd(0)-Arg-boehmite: as reusable and efficient nanocatalyst in Suzuki and Heck reactions. Catal Lett 147, 649–662 (2017). https://doi.org/10.1007/s10562-016-1927-y

    Article  CAS  Google Scholar 

  4. G.R. Patzke, Y. Zhou, R. Kontic, F. Conrad, Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. Angew. Chem. Int. Ed. 50, 826–859 (2011). https://doi.org/10.1002/anie.201000235

    Article  CAS  Google Scholar 

  5. H. Hassani, B. Zakerinasab, A. Nozarie, Sulfonic acid supported on Fe2O3/VO2 nanocatalyst: a highly efficient and reusable nanocatalyst for synthesis of spirooxindole derivatives. Asian J. Green Chem. 3, 59–69 (2018). https://doi.org/10.22631/ajgc.2017.101572.1032

    Article  CAS  Google Scholar 

  6. P. Moradi, A. Ghorbani-Choghamarani, Efficient synthesis of 5-substituted tetrazoles catalysed by palladium–S-methylisothiourea complex supported on boehmite nanoparticles. Appl Organometal Chem 31, e3602 (2017). https://doi.org/10.1002/aoc.3602

    Article  CAS  Google Scholar 

  7. M. Bakherad, R. Doosti, M. Mirzaee, K. Jadidi, A.H. Amin, O. Amiri, Palladium-free and phosphine-free sonogashira coupling reaction of aryl halides with terminal alkynes catalyzed by boehmite nanoparticle-anchored Cu(I) diethylenetriamine complex. Res. Chem. Intermed. 43, 7347–7363 (2017). https://doi.org/10.1007/s11164-017-3079-0

    Article  CAS  Google Scholar 

  8. M. Ghalkhani, M. Salehi, Electrochemical sensor based on multi-walled carbon nanotubes–boehmite nanoparticle composite modified electrode. J. Mater. Sci. 52, 12390–12400 (2017). https://doi.org/10.1007/s10853-017-1361-6

    Article  CAS  Google Scholar 

  9. S.P. Dubey, A.D. Dwivedi, M. Sillanpaa, H. Lee, Y.N. Kwon, C. Lee, Adsorption of As(V) by boehmite and alumina of different morphologies prepared under hydrothermal conditions. Chemosphere 169, 99–106 (2017). https://doi.org/10.1016/j.chemosphere.2016.11.052

    Article  CAS  PubMed  Google Scholar 

  10. A. Ghorbani-Choghamarani, P. Moradi, B. Tahmasbi, Ni–S-methylisothiourea complexes supported on boehmite nanoparticles and their application in the synthesis of 5-substituted tetrazoles. RSC Adv. 6, 56638–56646 (2016). https://doi.org/10.1039/c6ra08026j

    Article  CAS  Google Scholar 

  11. D. Xu, H. Jiang, M. Li, A novel method for synthesizing well-defined boehmite hollow microspheres. J. Colloid Interface Sci. 504, 660–668 (2017). https://doi.org/10.1016/j.jcis.2017.05.021

    Article  CAS  PubMed  Google Scholar 

  12. A. Ghorbani-Choghamarani, B. Tahmasbi, P. Moradi, Synthesis of a new Pd(0)-complex supported on boehmite nanoparticles and study of its catalytic activity for Suzuki and Heck reactions in H2O or PEG. RSC Adv 6, 43205 (2016). https://doi.org/10.1039/c6ra02967a

    Article  CAS  Google Scholar 

  13. T. Fujii, S. Kawasaki, M. Kanakubo, Differences in crystal growth behaviors of boehmite particles with octanoic acid and sodium octanoate under supercritical hydrothermal conditions. J. Supercrit. Fluids 119, 81–87 (2017). https://doi.org/10.1016/j.supflu.2016.09.011

    Article  CAS  Google Scholar 

  14. Y. Ohta, T. Hayakawa, T. Inomata, T. Ozawa, H. Masuda, Novel nano boehmite prepared by solvothermal reaction of aluminum hydroxide gel in monoethanolamine. J. Nanopart. Res. 19, 232 (2017). https://doi.org/10.1007/s11051-017-3918-3

    Article  CAS  Google Scholar 

  15. S.M. Kim, Y.J. Lee, K.W. Jun, J.Y. Park, H.S. Potdar, Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite. Mater Chem Phys 104, 56–61 (2007). https://doi.org/10.1016/j.matchemphys.2007.02.044

    Article  CAS  Google Scholar 

  16. X.Y. Chen, H.S. Huh, S.W. Lee, Hydrothermal synthesis of boehmite (Γ-Alooh) nanoplatelets and nanowires: ph-controlled morphologies. Nanotechnology 18, 285608 (2007). https://doi.org/10.1088/0957-4484/18/28/285608

    Article  CAS  Google Scholar 

  17. M. Thiruchitrambalam, V.R. Palkar, V. Gopinathan, Hydrolysis of aluminium metal and sol–gel processing of nano alumina. Mater Lett 58, 3063–3066 (2014). https://doi.org/10.1016/j.matlet.2004.05.043

    Article  CAS  Google Scholar 

  18. A. Ghorbani–Choghamarani, M. Hajjami, B. Tahmasbi, N. Noori, Boehmite silica sulfuric acid: as a new acidic material and reusable heterogeneous nanocatalyst for the various organic oxidation reactions. J. Iran. Chem. Soc. 13, 2193–2202 (2016). https://doi.org/10.1007/s13738-016-0937-4

    Article  CAS  Google Scholar 

  19. M. Hajjami, A. Ghorbani-Choghamarani, R. Ghafouri-Nejad, B. Tahmasbi, Efficient preparation of boehmite silica dopamine sulfamic acid as a novel nanostructured compound and its application as a catalyst in some organic reactions. New J Chem. 40, 3066–3074 (2016). https://doi.org/10.1039/C5NJ03546E

    Article  CAS  Google Scholar 

  20. A. Mohammadinezhad, B. Akhlaghinia, Fe3O4@boehmite-NH2-CoII NPs: an inexpensive and highly efficient heterogeneous magnetic nanocatalyst for the Suzuki–Miyaura and Heck–Mizoroki cross-coupling reactions. Green Chem. 19, 5625–5641 (2017). https://doi.org/10.1039/C7GC02647A

    Article  CAS  Google Scholar 

  21. M. Mirzaee, B. Bahramian, J. Gholizadeh, A. Feizi, R. Gholami, Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes. Chem. Eng. J. 308, 160–168 (2017). https://doi.org/10.1016/j.cej.2016.09.055

    Article  CAS  Google Scholar 

  22. M. Bakherad, R. Doosti, M. Mirzaee, K. Jadidi, Synthesis of pyrazolopyranopyrimidines catalyzed by caffeine supported on boehmite nanoparticles and their evaluation for anti-bacterial activities. Iran J Catal 7, 27–35 (2017)

    CAS  Google Scholar 

  23. K. Bahrami, M.M. Khodaei, M. Roostaei, The preparation and characterization of boehmite nanoparticles-TAPC: a tailored and reusable nanocatalyst for the synthesis of 12-Aryl-8,9,10,12-tetrahydrobenzo[A]xanthen-11-ones. New J Chem 38, 5515–5520 (2014). https://doi.org/10.1039/C4NJ01128G

    Article  CAS  Google Scholar 

  24. N.G. Afzaletdinova, E.R. Ibatova, Y. Murinov, Extraction of iridium (IV) by dihexyl sulfoxide from hydrochloric acid solutions. Russ. J. Inorg. Chem. 51, 971–976 (2006). https://doi.org/10.1134/S0036023606060209

    Article  Google Scholar 

  25. R.V. Kupwade, S.S. Khot, U.P. Lad, U.V. Desai, P.P. Wadgaonkar, Catalyst-free oxidation of sulfides to sulfoxides and diethylamine catalyzed oxidation of sulfides to sulfones using oxone as an oxidant. Res. Chem. Intermed. 43, 6875–6888 (2017). https://doi.org/10.1007/s11164-017-3026-0

    Article  CAS  Google Scholar 

  26. L. Shiri, B. Tahmasbi, Tribromide ion immobilized on magnetic nanoparticles as an efficient catalyst for the rapid and chemoselective oxidation of sulfides to sulfoxides. Phosphorus Sulfur Silicon 192, 53–57 (2017). https://doi.org/10.1080/10426507.2016.1224878

    Article  CAS  Google Scholar 

  27. M. Hajjami, Z. Shirvandi, Z. Yousofvand, Zr (IV)-ninhydrin supported MCM-41 and MCM-48 as novel nanoreactor catalysts for the oxidation of sulfides to sulfoxides and thiols to disulfides. J Porous Mater 24, 1461–1472 (2017). https://doi.org/10.1007/s10934-017-0386-1

    Article  CAS  Google Scholar 

  28. M.M.D. Pramanik, N. Rastogi, Visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO. Chem. Commun. 52, 8557–8560 (2016). https://doi.org/10.1039/C6CC04142F

    Article  CAS  Google Scholar 

  29. K.G.M. Koua, V.M. Dong, Tandem rhodium catalysis: exploiting sulfoxides for asymmetric transition-metal catalysis. Org. Biomol. Chem. 13, 5844–5847 (2015). https://doi.org/10.1039/C5OB00083A

    Article  Google Scholar 

  30. G. Chehardoli, M.A. Zolfigol, Melamine-(H2SO4)3/melamine-(HNO3)3 Instead of H2SO4/HNO3: a safe system for the fast oxidation of thiols and sulfides under solvent-free. J. Sulfur Chem. 36, 606–612 (2015). https://doi.org/10.1080/17415993.2015.1074688

    Article  CAS  Google Scholar 

  31. Y. Liu, H. Wang, C. Wang, J.P. Wan, C. Wen, Bio-based green solvent mediated disulfide synthesis via thiol couplings free of catalyst and additive. RSC Adv 3, 21369–21372 (2013). https://doi.org/10.1039/C3RA42915F

    Article  CAS  Google Scholar 

  32. M.A. Zolfigol, A. Khazaei, M. Safaiee, M. Mokhlesi, R. Rostamian, M. Bagheri, M. Shiri, H.G. Kruger, Application of silica vanadic acid as a heterogeneous, selective and highly reusable catalyst for oxidation of sulfides at room temperature. J Mol Catal A Chem 370, 80–86 (2013). https://doi.org/10.1016/j.molcata.2012.12.015

    Article  CAS  Google Scholar 

  33. A. Shaabani, A.H. Rezayan, Silica sulfuric acid promoted selective oxidation of sulfides to sulfoxides or sulfones in the presence of aqueous H2O2. Catal. Commun. 8, 1112–1116 (2007). https://doi.org/10.1016/j.catcom.2006.10.033

    Article  CAS  Google Scholar 

  34. D. Habibi, M.A. Zolfigol, M. Safaiee, A. Shamsian, A. Ghorbani-Choghamarani, Catalytic oxidation of sulfides to sulfoxides using sodium perborate and/or sodium percarbonate and silica sulfuric acid in the presence of KBr. Catal. Commun. 10, 1257–1260 (2009). https://doi.org/10.1016/j.catcom.2008.12.066

    Article  CAS  Google Scholar 

  35. A. Ghorbani-Choghamarani, H. Rabiei, B. Tahmasbi, B. Ghasemi, F. Mardi, Preparation of DSA@MNPs and application as heterogeneous and recyclable nanocatalyst for oxidation of sulfides and oxidative coupling of thiols. Res. Chem. Intermed. 42, 5723–5737 (2016). https://doi.org/10.1007/s11164-015-2399-1

    Article  CAS  Google Scholar 

  36. S.M. Vahdat, F. Chekin, M. Hatami, M. Khavarpour, S. Baghery, Z. Roshan-Kouhi, Synthesis of polyhydroquinoline derivatives via a four-component Hantzsch condensation catalyzed by tin dioxide nanoparticles. Chin. J. Catal. 34, 758–763 (2013). https://doi.org/10.1016/S1872-2067(11)60518-4

    Article  CAS  Google Scholar 

  37. M. Nasr-Esfahani, S.J. Hoseini, M. Montazerozohori, R. Mehrabi, H. Nasrabadi, Magnetic Fe3O4 nanoparticles: efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions. J. Mol. Catal. A: Chem. 382, 99–105 (2014). https://doi.org/10.1016/j.molcata.2013.11.010

    Article  CAS  Google Scholar 

  38. A. Ghorbani-Choghamarani, M.A. Zolfigol, M. Hajjami, H. Goudarziafshar, M. Nikoorazm, S. Yousefi, B. Tahmasbi, Nano aluminium nitride as a solid source of ammonia for the preparation of Hantzsch 1,4-dihydropyridines and bis-(1,4-dihydropyridines) in water via one pot multicomponent reaction. J Braz Chem Soc 22, 525–531 (2011). https://doi.org/10.1590/S0103-50532011000300016

    Article  CAS  Google Scholar 

  39. P.N. Kalaria, S.P. Satasia, D.K. Raval, Synthesis, characterization and pharmacological screening of some novel 5-imidazopyrazole incorporated polyhydroquinoline derivatives. Eur. J. Med. Chem. 78, 207–216 (2014). https://doi.org/10.1016/j.ejmech.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  40. B. Tahmasbi, A. Ghorbani-Choghamarani, First report of the direct supporting of palladium–arginine complex on boehmite nanoparticles and application in the synthesis of 5-substituted tetrazoles. Appl Organometal Chem 31, e3644 (2017). https://doi.org/10.1002/aoc.3644

    Article  CAS  Google Scholar 

  41. A. Ghorbani-Choghamarani, B. Tahmasbi, N. Noori, R. Ghafouri-nejad, A new palladium complex supported on magnetic nanoparticles and applied as an catalyst in amination of aryl halides, Heck and Suzuki reactions. J. Iran. Chem. Soc. 14, 681–693 (2017). https://doi.org/10.1007/s13738-016-1020-x

    Article  CAS  Google Scholar 

  42. A. Ghorbani-Choghamarani, B. Tahmasbi, Z. Moradi, S-Benzylisothiourea complex of palladium on magnetic nanoparticles: a highly efficient and reusable nanocatalyst for synthesis of polyhydroquinolines and Suzuki reaction. Appl Organometal Chem. 31, e3665 (2017). https://doi.org/10.1002/aoc.3665

    Article  CAS  Google Scholar 

  43. M.A. Bodaghifard, M. Solimannejad, S. Asadbegi, S. Dolatabadifarahani, Mild and green synthesis of tetrahydrobenzopyran, pyranopyrimidinone and polyhydroquinoline derivatives and DFT study on product structures. Res. Chem. Intermed. 42, 1165–1179 (2016). https://doi.org/10.1007/s11164-015-2079-1

    Article  CAS  Google Scholar 

  44. G.B. Dharma Rao, S. Nagakalyan, G.K. Prasad, Solvent-free synthesis of polyhydroquinoline derivatives employing mesoporous vanadium ion doped titania nanoparticles as a robust heterogeneous catalyst via the Hantzsch reaction. RSC Adv 7, 3611–3616 (2017). https://doi.org/10.1039/C6RA26664A

    Article  CAS  Google Scholar 

  45. O. Goli-Jolodar, F. Shirini, M. Seddighi, Introduction of a novel nanosized N-sulfonated brönsted acidic catalyst for the promotion of the synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. RSC Adv. 6, 26026–26037 (2016). https://doi.org/10.1039/C6RA04148E

    Article  CAS  Google Scholar 

  46. G. Mohammadi Ziarani, A.R. Badiei, Y. Khaniania, M. Haddadpour, One pot synthesis of polyhydroquinolines catalyzed by sulfonic acid functionalized SBA-15 as a new nanoporous acid catalyst under solvent-free conditions. Iran J Chem Chem. Eng. 29, 1–10 (2010)

    Google Scholar 

  47. A. Ghorbani-Choghamarani, P. Moradi, B. Tahmasbi, Ni-SMTU@boehmite: as an efficient and recyclable nanocatalyst for oxidation reactions. RSC Adv. 6, 56458–56466 (2016). https://doi.org/10.1039/c6ra09950e

    Article  CAS  Google Scholar 

  48. P. Gogoi, M. Kalita, T. Bhattacharjee, P. Barman, Copper–Schiff base complex catalyzed oxidation of sulfides with hydrogen peroxide. Tetrahedron Lett. 55, 1028–1030 (2014). https://doi.org/10.1016/j.tetlet.2013.12.073

    Article  CAS  Google Scholar 

  49. S.M. Islam, A.S. Roy, P. Mondal, K. Tuhina, M. Mobarak, J. Mondal, Selective oxidation of sulfides and oxidative bromination of organic substrates catalyzed by polymer anchored Cu(II) complex. Tetrahedron Lett. 53, 127–131 (2012). https://doi.org/10.1016/j.tetlet.2011.10.138

    Article  CAS  Google Scholar 

  50. A. Ghorbani-Choghamarani, B. Tahmasbi, P. Moradi, N. Havasi, Cu–S-(propyl)-2-aminobenzothioate on magnetic nanoparticles: highly efficient and reusable catalyst for synthesis of polyhydroquinoline derivatives and oxidation of sulfides. Appl Organometal Chem. 30, 619–625 (2016). https://doi.org/10.1002/aoc.3478

    Article  CAS  Google Scholar 

  51. M. Nikoorazm, A. Ghorbani-Choghamarani, H. Mahdavi, S.M. Esmaeili, Efficient oxidative coupling of thiols and oxidation of sulfides using UHP in the presence of Ni or Cd salen complexes immobilized on MCM-41 mesoporous as novel and recoverable nanocatalysts. Microporous Mesoporous Mater. 211, 174–181 (2015). https://doi.org/10.1016/j.micromeso.2015.03.011

    Article  CAS  Google Scholar 

  52. B. Yu, C.X. Guo, C.L. Zhong, Z.F. Diao, L.N. He, Metal-free chemoselective oxidation of sulfides by in situ generated Koser’s reagent in aqueous media. Tetrahedron Lett. 55, 1818–1821 (2015). https://doi.org/10.1016/j.tetlet.2014.01.116

    Article  CAS  Google Scholar 

  53. S. Hussain, D. Talukdar, S.K. Bharadwaj, M.K. Chaudhuri, VO2F(dmpz)2: a new catalyst for selective oxidation of organic sulfides to sulfoxides with H2O2. Tetrahedron Lett. 53, 6512–6515 (2012). https://doi.org/10.1016/j.tetlet.2012.09.067

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Ilam University and Iran National Science Foundation (INSF) for financial support of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Ghorbani-Choghamarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani-Choghamarani, A., Moradi, P. & Tahmasbi, B. Nickel(II) immobilized on dithizone–boehmite nanoparticles: as a highly efficient and recyclable nanocatalyst for the synthesis of polyhydroquinolines and sulfoxidation reaction. J IRAN CHEM SOC 16, 511–521 (2019). https://doi.org/10.1007/s13738-018-1526-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1526-5

Keywords

Navigation