Skip to main content
Log in

Voltammetric determination of meclizine HCL and its application in pharmaceuticals and biological fluid using CNTS/ZnO nano-carbon modified electrode

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this article, we report a methodology for the voltammetric behavior of meclizine hydrochloride at different nano modified electrodes e.g., Glassy carbon (GCE), pencil graphite (PGE), Carbon Nano tubes-carbon paste (CNTS-CPE) and Carbon Nano tubes-zinc oxide carbon paste (CNTS/ZnO-CPE) using cyclic and square wave voltammetry and the highest performance of them was CPE/CNTs/ZnO electrode and therefore was used as working electrode. The oxidation reaction mechanism of meclizine hydrochloride (MEC-HCL) is proposed to be one electron system. The results obtained with a square wave were linear over the concentration ranges 19.5–102.4 ng mL−1 with a correlation coefficient 0.998. The square wave technique showed a low of detectable (LOD) of 6.444 ng/mL and a limit of quantification (LOQ) of 19.530 ng/mL at CNTS/ZnO-CPE. Based on these findings, a simple and not time-consuming method was used for the analysis of MEC-HCL in pharmaceutics and biological fluids. The method showed a minimum detectability (LOD) of 0.02, 0.008 and 0.14 lg/mL and a limit of quantitation (LOQ) of 0.06, 0.02 and 0.42 lg/mL at PGE, CPE and GCE, respectively. The method was validated and compared with the reference valid method. It revealed good accuracy and reproducible results. The anticipated voltammetric procedure has the advantage of being simple, precise, inexpensive and highly sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Martindale, S.C. Sweetman, Martindale: the complete drug reference (Pharmaceutical press, London, 1999)

    Google Scholar 

  2. V. Newman, J.T. Fullerton, P.O. Anderson, Clinical advances in the management of severe nausea and vomiting during pregnancy. J. Obstet. Gynecol. Neonatal Nurs. 22(6), 483–490 (1993)

    Article  CAS  PubMed  Google Scholar 

  3. E. Westgate, J. Sherma, Analysis of the active ingredient, meclizine, in motion sickness tablets by high performance thin layer chromatography with densitometric measurement of fluorescence quenching. J. Liq. Chromatogr. Relat. Technol. 24(18), 2873–2878 (2001)

    Article  CAS  Google Scholar 

  4. N. Foda, H. Jun, J. McCall, Quantitative analysis of meclizine in tablet formulations by HPLC. Anal. Lett. 21(7), 1177–1188 (1988)

    Article  CAS  Google Scholar 

  5. T. Al-Jallad et al., Simultaneous determination of pyridoxine hydrochloride and meclizine hydrochloride in tablet formulations by HPLC. Pharm. Pharmacol. Commun. 5(8), 479–483 (2000)

    Article  Google Scholar 

  6. M.S. Arayne, N. Sultana, F.A. Siddiqui, Simultaneous determination of pyridoxine, meclizine and buclizine in dosage formulations and human serum by RP-LC. Chromatographia 67(11–12), 941–945 (2009)

    Google Scholar 

  7. R. Peraman et al., A stability-indicating RP-HPLC method for the quantitative analysis of meclizine hydrochloride in tablet dosage form. J. Chromatogr. Sci. 53(5), 793–799 (2015)

    Article  CAS  PubMed  Google Scholar 

  8. N. Sher et al., Simultaneous determination of antihistamine anti-allergic drugs, cetirizine, domperidone, chlorphenamine maleate, loratadine, meclizine and buclizine in pharmaceutical formulations, human serum and pharmacokinetics application. Anal. Methods 6(8), 2704–2714 (2014)

    Article  CAS  Google Scholar 

  9. Z.J. Wang et al., Quantification of meclizine in human plasma by high performance liquid chromatography-mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 879(1), 95–99 (2011)

    Article  CAS  Google Scholar 

  10. M. Nawaz, A new validated stability indicating RP-HPLC method for simultaneous estimation of pyridoxine hydrochloride and meclizine hydrochloride in pharmaceutical solid dosage forms. Chromatogr. Res. Int. (1), 1–7 (2013)

  11. M. Rambla-Alegre et al., Capillary electrophoresis determination of antihistamines in serum and pharmaceuticals. Anal. Chim. Acta 666(1–2), 102–109 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. Y.H. Ho et al., Quantitative enantiomeric analysis of chlorcyclizine, hydroxyzine, and meclizine by capillary electrophoresis. Anal. Bioanal. Chem. 376(6), 859–863 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. F. Hom, W. Ebert, Determination of meclizine hydrochloride by ion-pair extraction with methyl orange. J. Pharm. Sci. 66(5), 710–713 (1977)

    Article  CAS  PubMed  Google Scholar 

  14. M.M. Bkhaitan, A.Z. Mirza, Spectrophotometric method for determination of meclizine in pure and dosage form via ion pair complex formation using eosin Y. Curr. Pharm. Anal. 14(2), 95–100 (2018)

    Article  CAS  Google Scholar 

  15. M. Rizk et al., Sensitive anodic voltammetric determination of methylergometrine maleate in bulk and pharmaceutical dosage forms using differential pulse voltammetry. J. Electroanal. Chem. 749, 53–61 (2015)

    Article  CAS  Google Scholar 

  16. A. Shalaby et al., Electrochemical oxidation behavior of itraconazole at different electrodes and its anodic stripping determination in pharmaceuticals and biological fluids. J. Electroanal. Chem. 763, 51–62 (2016)

    Article  CAS  Google Scholar 

  17. B. Uslu, S.A. Ozkan, Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal. Lett. 40(5), 817–853 (2007)

    Article  CAS  Google Scholar 

  18. M. Rizk et al., Highly sensitive differential pulse and square wave voltammetric methods for determination of strontium ranelate in bulk and pharmaceutical dosage form. Electroanalysis 28(4), 770–777 (2016)

    Article  CAS  Google Scholar 

  19. K. Kalcher, Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 2(6), 419–433 (1990)

    Article  CAS  Google Scholar 

  20. K. Ravichandran, R. Baldwin, Chemically modified carbon paste electrodes. J. Electroanal. Chem. Interfacial Electrochem. 126(1–3), 293–300 (1981)

    Article  CAS  Google Scholar 

  21. P.M. Ajayan, O.Z. Zhou, Applications of carbon nanotubes, Carbon nanotubes (Springer, Berlin, 2001), pp. 391–425

    Chapter  Google Scholar 

  22. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Carbon nanotubes–the route toward applications. Science 297(5582), 787–792 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. M. Endo, M.S. Strano, P.M. Ajayan, Potential applications of carbon nanotubes, in Carbon nanotubes (Springer, Berlin, 2007), pp. 13–62

    Google Scholar 

  24. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes, vol 35. (World Scientific, Singapore, 1998)

    Book  Google Scholar 

  25. J. Wang, Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 17(1), 7–14 (2005)

    Article  CAS  Google Scholar 

  26. W. Gao, J. Song, N. Wu, Voltammetric behavior and square-wave voltammetric determination of trepibutone at a pencil graphite electrode. J. Electroanal. Chem. 576(1), 1–7 (2005)

    Article  CAS  Google Scholar 

  27. A. Levent, Y. Yardim, Z. Senturk, Voltammetric behavior of nicotine at pencil graphite electrode and its enhancement determination in the presence of anionic surfactant. Electrochim. Acta 55(1), 190–195 (2009)

    Article  CAS  Google Scholar 

  28. M. Ozsoz et al., Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal. Chem. 75(9), 2181–2187 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. C. Chen et al., Zinc oxide nanoparticle decorated multi-walled carbon nanotubes and their optical properties. Acta Mater. 54(20), 5401–5407 (2006)

    Article  CAS  Google Scholar 

  30. W. Zhang et al., Synergistic effects of nano-ZnO/multi-walled carbon nanotubes/chitosan nanocomposite membrane for the sensitive detection of sequence-specific of PAT gene and PCR amplification of NOS gene. J. Membr. Sci. 325(1), 245–251 (2008)

    Article  CAS  Google Scholar 

  31. H. Zittel, F. Miller, A glassy-carbon electrode for voltammetry. Anal. Chem. 37(2), 200–203 (1965)

    Article  CAS  Google Scholar 

  32. R.L. McCreery, Carbon electrodes: structural effects on electron transfer kinetics. Electroanal. Chem. 17, 221–374 (1991)

    Google Scholar 

  33. W. Van der Linden, J.W. Dieker, Glassy carbon as electrode material in electro-analytical chemistry. Anal. Chim. Acta 119(1), 1–24 (1980)

    Article  Google Scholar 

  34. M. Gattrell, D. Kirk, The electrochemical oxidation of aqueous phenol at a glassy carbon electrode. Can. J. Chem. Eng. 68(6), 997–1003 (1990)

    Article  CAS  Google Scholar 

  35. S.A. Kumar, S.M. Chen, Nanostructured zinc oxide particles in chemically modified electrodes for biosensor applications. Anal. Lett. 41(2), 141–158 (2008)

    Article  CAS  Google Scholar 

  36. M.J. Dewar, W. Thiel, Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 99(15), 4899–4907 (1977)

    Article  CAS  Google Scholar 

  37. M.J. Dewar, W. Thiel, Ground states of molecules. 39. MNDO results for molecules containing hydrogen, carbon, nitrogen, and oxygen. J. Am. Chem. Soc. 99(15), 4907–4917 (1977)

    Article  CAS  Google Scholar 

  38. M.J. Dewar, W. Thiel, A semiempirical model for the two-center repulsion integrals in the NDDO approximation. Theor. Chim. Acta 46(2), 89–104 (1977)

    Article  CAS  Google Scholar 

  39. H.T.S. Britton, R.A. Robinson, CXCVIII.-Universal buffer solutions and the dissociation constant of veronal. J. Chem. Soc. (1), 1456–1462 (1931)

  40. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 101(1), 19–28 (1979)

    Article  CAS  Google Scholar 

  41. B. Rezaei, S. Damiri, Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate(II) electrocatalyst system as a sensor for determination of captopril. Sens. Actuators B 134(1), 324–331 (2008)

    Article  CAS  Google Scholar 

  42. D. Pletcher et al., 6 - Potential sweep techniques and cyclic voltammetry, Instrumental Methods in Electrochemistry, ed. by D.P.G.P.M.P. Robinson (Woodhead Publishing, Cambridge, 2010), pp. 178–228

    Chapter  Google Scholar 

  43. D.K. Gosser, Cyclic voltammetry: simulation and analysis of reaction mechanisms (VCH, New York, 1993)

    Google Scholar 

  44. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, second edn. (John Wiley and Sons, New York, 2001)

    Google Scholar 

  45. J.N. Miller, J.C. Miller, Statistics and chemometrics for analytical chemistry (Pearson/Prentice-Hall, Harlow, 2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported by NODCAR Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Monem O. K. Abu Shagor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 152 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendawy, H.A.M., Abdellatef, H.E., Hassan, W.S. et al. Voltammetric determination of meclizine HCL and its application in pharmaceuticals and biological fluid using CNTS/ZnO nano-carbon modified electrode. J IRAN CHEM SOC 15, 1881–1888 (2018). https://doi.org/10.1007/s13738-018-1385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1385-0

Keywords

Navigation