Skip to main content

Advertisement

Log in

Single-layer solar cell based on nanostructure of polyaniline on fluorine-doped tin oxide: a simple, low-cost and efficient FTO│n-PANI│Al cell

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Nanostructure of polyaniline (n-PANI) is assembled to form a polymer solar cell on fluorine-doped tin oxide (FTO) and aluminum electrodes. The characterization and doping process of n-PANI are verified by ultraviolet–visible (UV–Vis) and Fourier transform infrared spectroscopies. The n-PANI conductivity is in the semiconductive range, and its contact resistance is determined by circular-TLM. The morphologies of n-PANI, FTO and n-PANI film deposited on FTO surface are investigated using atomic force microscopy, scanning electron microscope and transmission electron microscopy. The energy levels of HOMO and LUMO and band gap energy are obtained by cyclic voltammetry and UV–Vis spectroscopy. The similar results are found for band gap energy. The photovoltaic cell characteristics, i.e., open-circuit voltage (VOC), short-circuit current density (JSC), fill factor and power conversion efficiency (PCE or η), are evaluated by measuring the current density–voltage (JV) under illumination condition and resistance measurements and are found to be 936 mV, 2.72 mA/cm2, 0.377 and 1.6%, respectively, for FTO│n-PANI│Al structure. The mechanism of photoelectron conduction within the cell is studied by the electrochemical impedance spectroscopy. The results shows that not only FTO│n-PANI│Al cell is completely efficient (in comparison with other similar cells, PCE is relatively high), but also its fabrication is of low cost, simple, oxidation resistant and under the green condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 3
Fig. 13

Similar content being viewed by others

References

  1. Z. He, C. Zhong, X. Huang, W.Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mater. 23, 4636 (2011)

    Article  CAS  Google Scholar 

  2. L. Dou, J. You, J. Yang, Ch. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, Y. Yang, Nat. Photonics 6, 180 (2012)

    Article  CAS  Google Scholar 

  3. E.J. Luber, J.M. Buriak, ACS Nano 7, 4708 (2013)

    Article  CAS  Google Scholar 

  4. M. Jørgensen, K. Norrman, F.C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008)

    Article  Google Scholar 

  5. G. Hashmi, K. Miettunen, T. Peltola, J. Halme, I. Asghar, K. Aitola, M. Toivola, P. Lund, Renew. Sustain. Enerey Rev. 15, 3717 (2011)

    Article  CAS  Google Scholar 

  6. K.T. Dembele, R. Nechache, L. Nikolova, A. Vomiero, C. Santato, S. Licoccia, F. Rosei, J. Power Sources 233, 93 (2013)

    Article  CAS  Google Scholar 

  7. Y. Guo, Y. Zhang, H. Liu, S.W. Lai, Yu. Li, Y. Li, W. Hu, Sh Wang, Ch. Che, D. Zhu, J. Phys. Chem. Lett. 1, 327 (2010)

    Article  CAS  Google Scholar 

  8. A. Hagfeldt, M, Grätzel. Acc. Chem. Res. 33, 269 (2000)

    Article  CAS  Google Scholar 

  9. M. Reyes-Reyes, K. Kim, D.L. Carroll, Appl. Phys. Lett. 87, 083506 (2005)

    Article  Google Scholar 

  10. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, Appl. Phys. Lett. 78, 841 (2001)

    Article  CAS  Google Scholar 

  11. J. Xue, B.P. Rand, S. Uchida, S.R. Forrest, J. Appl. Phys. 98, 124903 (2005)

    Article  Google Scholar 

  12. T. Kietzke, OptoElectronics 2007, 1 (2007)

    Article  Google Scholar 

  13. H. Hoppe, N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004)

    Article  CAS  Google Scholar 

  14. A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J.P. Ferraris, J. Power Source 47, 89 (1994)

    Article  CAS  Google Scholar 

  15. T. Shoa, J.D. Madden, ChE Fok, T. Mirfakhrai, Adv. Sci. Technol. 61, 26 (2008)

    Article  CAS  Google Scholar 

  16. H.S. Nalwa, Handbook of Organic Conductive Molecules and Polymers (Wiley, New York, 1997)

    Google Scholar 

  17. A.O. Patil, A.J. Heeger, F. Wudl, Chem. Rev. 88, 183 (1988)

    Article  CAS  Google Scholar 

  18. F. Padinger, C.J. Brabec, T. Fromherz, J.C. Hummelen, N.S. Sariciftci, Opto Electron. Rev. 8, 280 (2000)

    CAS  Google Scholar 

  19. M.S. Freund, B. Deore, Self-Doped Conducting Polymers (Wiley, River Basins, 2007)

    Book  Google Scholar 

  20. G. Wallace, L.A.P. Kane-Maguire, P.R. Teasdale, Conductive Electroactive Polymers (Taylor & Francis Group, Boca Raton, 2009)

    Google Scholar 

  21. A. Eftekhari, Nanostructured Conductive Polymers (Wiley, Dayton, 2010)

    Book  Google Scholar 

  22. S. Bhadraa, D. Khastgira, N.K. Singhaa, J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)

    Article  Google Scholar 

  23. O. Abdulrazzaq, S.E. Bourdo, M. Woo, V. Saini, B.C. Berry, A. Ghosh, A.S. Biris, A.C.S. Appl, Mater. Interfaces 7, 27667 (2015)

    Article  CAS  Google Scholar 

  24. B. Ecker, J.C. Nolasco, J. Pallarés, L.F. Marsal, J. Posdorfer, J. Parisi, E. von Hauff, Adv. Funct. Mater. 21, 2705 (2011)

    Article  CAS  Google Scholar 

  25. G. Wang, W. Xing, S. Zhuo, Electrochim. Acta 66, 151 (2012)

    Article  CAS  Google Scholar 

  26. E.W. Paul, A.J. Ricco, M.S. Wrighton, J. Phys. Chem. 89, 1441 (1985)

    Article  CAS  Google Scholar 

  27. Y.G. Wang, H.Q. Li, Y. Xia, Adv. Mater. 18, 2619 (2006)

    Article  CAS  Google Scholar 

  28. Z. Liu, J. Zhou, H. Xue, L. Shen, H. Zang, W. Chen, Synth. Met. 156, 721 (2006)

    Article  CAS  Google Scholar 

  29. S. Yu, M. Xi, K. Han, Z. Wang, W. Yang, H. Zhu, Thin Solid Films 519, 357 (2010)

    Article  CAS  Google Scholar 

  30. J. Li, L. Zhu, Y. Wu, Y. Harima, A. Zhang, H. Tang, Polym. J. 47, 7361 (2006)

    Article  CAS  Google Scholar 

  31. F. Yakuphanoglu, E. Basaran, B.F. Süenkal, E. Sezer, J. Phys. Chem. B 110, 16908 (2006)

    Article  CAS  Google Scholar 

  32. L. Saad, S. Ebrahim, M. Fetteha, M. Soliman, T.M. Abdel-Fattah, ECS J. Solid State Sci. Technol. 3, M55 (2014)

    Article  CAS  Google Scholar 

  33. Y.J. Lin, F.M. Yang, C.S. Lin, J. Appl. Phys. 102, 103702 (2007)

    Article  Google Scholar 

  34. V. Mandanipour, M. Noroozifar, A.R. Modarresi-Alam, Int. J. Electrochem. Sci. 11, 5302 (2016)

    Article  CAS  Google Scholar 

  35. N. Gospodinova, E. Tomšík, J. Romanova, Chem. Pap. 67, 972 (2013)

    Article  CAS  Google Scholar 

  36. R.K. Singh, J. Kumar, A. Kumar, V. Kumar, R. Kant, R. Singh, Sol. Energy Mater. Sol. Cells 94, 2386 (2010)

    Article  CAS  Google Scholar 

  37. P.P. Zamora, F.R. Díaz, M.A. del Valle, G. Louarn, L. Cattin, J.C. Bernède, Int. J. Sci. 2, 1 (2013)

    Google Scholar 

  38. S. Abdul Almohsin, S.M. AL-Mutoki, Z. Li, J. Ark. Acad. Sci. 66, 36 (2012)

    CAS  Google Scholar 

  39. H. Ashassi-Sorkhabi, E. Asghari, A. Mirmohseni, Iran. Polym. J. 17, 711 (2008)

    CAS  Google Scholar 

  40. E. Hassan, N. Khattab, M.A. Rehim, H. Salam, L.F.M. Ismail, G. Turky, Res. Rev. Mater. Sci. Chem. 2, 71 (2013)

    Google Scholar 

  41. T.W. Lee, D.C. Kim, N.S. Kang, J.W. Yu, M.J. Cho, K.H. Kim, D.H. Choi, Chem. Lett. 37, 866 (2008)

    Article  CAS  Google Scholar 

  42. W. Zhao, L. Ye, S. Zhang, B. Fan, M. Sun, J. Hou, Sci. Rep. 4, 6570 (2014)

    Article  CAS  Google Scholar 

  43. Z. Xiaoping, L. Zhang, W. Jihuai, L. Jianming, F. Leqing, J. Mater. Sci. Mater Electron. 24, 1970 (2013)

    Article  Google Scholar 

  44. X. Du, C. Zhou, G. Wang, Y. Mai, Chem. Mater. 20, 3806 (2008)

    Article  CAS  Google Scholar 

  45. M. Noroozifar, M. Khorasani-Motlagh, H.H. Nadiki, M.S. Hadavi, M.M. Foroughi, Sens. Actuators B Chem. 204, 333 (2014)

    Article  CAS  Google Scholar 

  46. H.D. Tran, J.M. D’Arcy, Y. Wang, P.J. Beltramo, V.A. Strong, R.B. Kaner, J. Mater. Chem. 201, 3534 (2011)

    Article  Google Scholar 

  47. A. Farrokhzadeh, A.R. Modarresi-Alam, J. Solid State Chem. 237, 258 (2016)

    Article  CAS  Google Scholar 

  48. F. Movahedifar, A.R. Modarresi-Alam, Polym. Adv. Technol. 27, 131 (2016)

    Article  CAS  Google Scholar 

  49. A.R. Modarresi-Alam, H.A. Amirazizi, F. Movahedifar, A. Farrokhzadeh, G.R. Asli, H. Nahavandi, J. Mol. Struct. 1083, 17 (2015)

    Article  CAS  Google Scholar 

  50. A.R. Modarresi-Alam, S. Zafari, A. Rafiei, Miandashti. Polym. Adv. Technol. 26, 645 (2015)

    Article  CAS  Google Scholar 

  51. H. Bagheri Koosheh, A.R. Modarresi-Alam, Polym. Adv. Technol. 27, 1038 (2016)

    Article  Google Scholar 

  52. M. Trchová, J. Stejskal, Pure Appl. Chem. 83, 1803 (2011)

    Article  Google Scholar 

  53. D.R.T. Zahn, G.N. Gavrila, M. Gorgoi, Chem. Phys. 325, 99 (2006)

    Article  CAS  Google Scholar 

  54. P.I. Djurovich, E.I. Mayo, S.R. Forrest, M.E. Thompson, Org. Electron. 10, 515 (2009)

    Article  CAS  Google Scholar 

  55. M.M. Ahmida, S.H. Eichhorn, ECS Trans. 25, 1 (2010)

    CAS  Google Scholar 

  56. A. Chen, K. Zhu, Q. Shao, Z. Ji, Semicond. Sci. Technol. 31, 065025 (2016)

    Article  Google Scholar 

  57. Y. Park, V. Choong, Y. Gao, B.R. Hsieh, C.W. Tang, Appl. Phys. Lett. 68, 2699 (1996)

    Article  CAS  Google Scholar 

  58. M.G. Helander, M.T. Greiner, Z.B. Wang, W.M. Tang, Z.H. Lu, J. Vac. Sci. Technol. A 29, 011019 (2011)

    Article  Google Scholar 

  59. W.H. Baek, M. Choi, T.S. Yoon, H.H. Lee, Y.S. Kim, Appl. Phys. Lett. 96, 133506 (2010)

    Article  Google Scholar 

  60. S.M. Jung, D.L. Mafra, C.-T. Lin, H.Y. Jung, J. Kong, Nanoscale 7, 4386 (2015)

    Article  CAS  Google Scholar 

  61. U. Olgun, M. Gülfen, RSC Adv. 4, 25165 (2014)

    Article  CAS  Google Scholar 

  62. Y. Liu, M.S. Liu, A.K.-Y. Jen, Acta Polymer. 50, 105 (1999)

    Article  CAS  Google Scholar 

  63. S.-W. Hwang, Y. Chen, Macromolecules 34, 2981 (2001)

    Article  CAS  Google Scholar 

  64. D. Hidalgo, S. Bocchini, M. Fontana, G. Saracco, S. Hernández, RSC Adv. 5, 49429 (2015)

    Article  CAS  Google Scholar 

  65. J. Stejskal, R.G. Gilbert, Pure Appl. Chem. 74, 857 (2002)

    Article  CAS  Google Scholar 

  66. T. Abbas, L. Slewa, Int. J. Nano Electron. Mater. 8, 111 (2015)

    Google Scholar 

  67. J. Lee, E. Bozorg-Grayeli, S.B. Kim, M. Asheghi, H.-S.P. Wong, K.E. Goodson, Appl. Phys. Lett. 102, 191911 (2013)

    Article  Google Scholar 

  68. Y. Jiang, P. Wang, L. Lin, Nanotechnology 22, 365704 (2011)

    Article  Google Scholar 

  69. L. Giraudet, S. Fauveaux, O. Simonetti, C. Petit, K. Blary, T. Maurel, A. Belkhir, Synth. Met. 156, 838 (2006)

    Article  CAS  Google Scholar 

  70. P. Chal, A. Shit, A.K. Nandi, J. Mater. Chem. C 4, 272–285 (2015)

    Article  Google Scholar 

  71. H. Bejbouji, L. Vignau, J.L. Miane, M.T. Dang, E.M. Oualim, M. Harmouchi, A. Mouhsen, Sol. Energy Mater. Sol. Cells 94, 176 (2010)

    Article  CAS  Google Scholar 

  72. M.A. Henderson, Surf. Sci. Rep. 66, 185 (2011)

    Article  CAS  Google Scholar 

  73. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, Sol. Energy Mater. Sol. Cells 90, 2011 (2006)

    Article  CAS  Google Scholar 

  74. S.K. Balasingam, Y. Jun, Isr. J. Chem. 55, 955 (2015)

    Article  CAS  Google Scholar 

  75. Arnab Shit, Shreyam Chatterjee, Arun K. Nandi, Phys. Chem. Chem. Phys. 16, 20079 (2014)

    Article  CAS  Google Scholar 

  76. R. Po, C. Carbonera, A. Bernardi, N. Camaioni, Energy Environ. Sci. 4, 285 (2011)

    Article  CAS  Google Scholar 

  77. S. Thomas, T.G. Deepak, G.S. Anjusree, T.A. Arun, S.V. Nair, A.S. Nair, J. Mater. Chem. A 2, 4474 (2014)

    Article  CAS  Google Scholar 

  78. S. Lattante, Electronics 3, 132 (2014)

    Article  CAS  Google Scholar 

  79. H. Zeng, X. Zhu, Y. Liang, X. Guo, Polymers 7, 333 (2015)

    Article  CAS  Google Scholar 

  80. S. AbdulAlmohsin, J. Armstrong, J.B. Cui, J. Renew. Sustain. Energy 4, 043108 (2012)

    Article  Google Scholar 

  81. C.Y. Liu, K.-C. Huang, P.-H. Chung, C.-C. Wang, C.-Y. Chen, R. Vittal, C.-G. Wu, W.-Y. Chiu, K.-C. Ho, J. Power Source 217, 152 (2012)

    Article  CAS  Google Scholar 

  82. B. He, Q. Tang, M. Wang, H. Chen, S. Yuan, A.C.S. Appl, Mater. Interfaces 6, 8230 (2014)

    Article  CAS  Google Scholar 

  83. Z.D. Zujovic, M. Gizdavic-Nikolaidis, P.A. Kilmartin, J. Travas-Sejdic, R.P. Cooney, G.A. Bowmaker, Appl. Magn. Reson. 28, 123 (2005)

    Article  CAS  Google Scholar 

  84. J.-Y. Fang, K.C. Fang, C.-P. Hsu, C.H. Chu, J. Liu, Y.-L. Wang, ECS Trans. 64, 63 (2014)

    Article  CAS  Google Scholar 

  85. F. Addiego, I. Mihai, D. Marti, K. Wang, V. Toniazzo, D. Ruch, Synth. Met. 198, 196 (2014)

    Article  CAS  Google Scholar 

  86. Z.J. Chermahini, A.N. Chermahini, H.A. Dabbagh, B. Rezaei, N. Irannejad, J. Iran. Chem. Soc. 14, 1549 (2017)

    Article  Google Scholar 

  87. A. Sacco, Renew. Sustain. Energy Rev. 79, 814 (2017)

    Article  CAS  Google Scholar 

  88. F. Fabregat-Santiagoa, J. Bisquerta, G. Garcia-Belmontea, G. Boschloob, A. Hagfeldt, Sol. Energy. Mater. Sol. Cells 87, 117 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of grant from the Graduate Council of University of Sistan and Baluchestan and National Nanotechnology Initiative funded by Iranian government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Modarresi-Alam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighi-Darijani, N., Modarresi-Alam, A.R., Noroozifar, M. et al. Single-layer solar cell based on nanostructure of polyaniline on fluorine-doped tin oxide: a simple, low-cost and efficient FTO│n-PANI│Al cell. J IRAN CHEM SOC 15, 967–980 (2018). https://doi.org/10.1007/s13738-018-1294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1294-2

Keywords

Navigation