Skip to main content
Log in

Effect of fluorine doping concentration on efficiency of ZnO/p-Si heterojunction solar cells fabricated by spray pyrolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The paper reports the fabrication of fluorine-doped zinc oxide/p- silicon (ZnO/p-Si) heterojunction solar cells and the effects of fluorine content on efficiency of these solar cells. Fluorine-doped zinc oxide nanoparticles (FZO) were synthesized using sol–gel method and heterojunctions of n-FZO/p-Si solar cells were fabricated by the spray pyrolysis technique. FZO thin films were also deposited on the glass substrate under the same conditions for the investigation of their optical properties. The structural characterizations of FZO films were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Optical characterization of these thin films was studied by UV–Vis spectroscopy and transmittance values of over 84% were obtained at the visible region. The current–voltage characteristic of the n-FZO/p-Si heterojunction solar cells was measured at room temperature in the dark and under illumination (90 mW/cm2). Series resistance (Rs) values obtained from solar cells were found between 5.52 and 10.12 Ω. The conversion efficiency of the fabricated solar cell of between 3.82 and 6.74% was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Fan, J.G. Lu, J. Nanosci. Nanotechnol. 5, 1561 (2005)

    CAS  Google Scholar 

  2. D. Acosta, A. López-Suárez, C. Magaña, F. Hernández, Thin Solid Films 653, 309 (2018)

    CAS  Google Scholar 

  3. V. Consonni, J. Briscoe, E. Kärber, X. Li, T. Cossuet, Nanotechnology 30, 362001 (2019)

    CAS  Google Scholar 

  4. A.A. Ibrahim, A. Ashour, J. Mater. Sci. Mater. Electron. 17, 835 (2006)

    CAS  Google Scholar 

  5. L. Shen, Z.Q. Ma, C. Shen, F. Li, B. He, F. Xu, Superlattices Microstruct. 48, 426 (2010)

    CAS  Google Scholar 

  6. R. Khokhra, B. Bharti, H.N. Lee, R. Kumar, Sci. Rep. 7, 1 (2017)

    CAS  Google Scholar 

  7. X. Zong, R. Zhu, Sci. Rep. 7, 1 (2017)

    Google Scholar 

  8. A.-J. Cheng, Y. Tzeng, Y. Zhou, M. Park, T. Wu, C. Shannon, D. Wang, W. Lee, Appl. Phys. Lett. 92, 092113 (2008)

    Google Scholar 

  9. N.A. Suvorova, I.O. Usov, L. Stan, R.F. Depaula, A.M. Dattelbaum, Q.X. Jia, A.A. Suvorova, Appl. Phys. Lett. 92, 1 (2008)

    Google Scholar 

  10. T. Tynell, M. Karppinen, Semicond. Sci. Technol. 29, 043001 (2014)

    Google Scholar 

  11. A. El Manouni, F.J. Manjón, M. Mollar, B. Marí, R. Gómez, M.C. López, J.R. Ramos-Barrado, Superlattices Microstruct. 39, 185 (2006)

    Google Scholar 

  12. J. Mass, P. Bhattacharya, R.S. Katiyar, Mater. Sci. Eng. B 103, 9 (2003)

    Google Scholar 

  13. S. Kurtaran, S. Aldag, G. Ofofoglu, I. Akyuz, F. Atay, Mater. Chem. Phys. 185, 137 (2017)

    CAS  Google Scholar 

  14. B.J. Lokhande, P.S. Patil, M.D. Uplane, Phys. B 302–303, 59 (2001)

    Google Scholar 

  15. S.D. Senol, O. Ozturk, C. Terzioğlu, Ceram. Int. 41, 11194 (2015)

    CAS  Google Scholar 

  16. S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 255, 2353 (2008)

    CAS  Google Scholar 

  17. E. Chávez-Vargas, V.K. Jayaraman, T.V.K. Karthik, M. de la L. Olvera, J. Vega-Pérez, A. Jiménez-González, A. Maldonado, O. López-Ortega, H. Gómez-Pozos, J. Mater. Sci. Mater. Electron. 29, 15821 (2018)

    Google Scholar 

  18. E. Gunasekaran, M. Ezhilan, G.K. Mani, P. Shankar, A.J. Kulandaisamy, J.B.B. Rayappan, K.J. Babu, Semicond. Sci. Technol. 33, 228 (2018)

    Google Scholar 

  19. V. Bhosle, A. Tiwari, J. Narayan, J. Appl. Phys. 100, 033713 (2006)

    Google Scholar 

  20. L. Castañeda, A. Maldonado, A. Escobedo-Morales, M. Avendaño-Alejo, H. Gómez, J. Vega-Pérez, M. De La, Mater. Sci. Semicond. Process. 14, 114 (2011)

    Google Scholar 

  21. V. Shelke, B.K. Sonawane, M.P. Bhole, D.S. Patil, J. Mater. Sci. Mater. Electron. 23, 451 (2012)

    CAS  Google Scholar 

  22. G. Algün, J. Mater. Sci. Mater. Electron. 29, 17039 (2018)

    Google Scholar 

  23. A. Wang, J. Zhao, M.A. Green, Appl. Phys. Lett. 57, 602 (1990)

    CAS  Google Scholar 

  24. L. Chen, X. Chen, Y. Liu, Y. Zhao, X. Zhang, J. Semicond. 38, 1 (2017)

    Google Scholar 

  25. D.G. Baik, S.M. Cho, Thin Solid Films 354, 227 (1999)

    CAS  Google Scholar 

  26. R. Pietruszka, B.S. Witkowski, E. Zielony, K. Gwozdz, E. Placzek-Popko, M. Godlewski, Sol. Energy 155, 1282 (2017)

    CAS  Google Scholar 

  27. A. Özmen, S. Aydogan, M. Yilmaz, Ceram. Int. 45, 14794 (2019)

    Google Scholar 

  28. G.G. Untila, T.N. Kost, A.B. Chebotareva, Sol. Energy 179, 352 (2019)

    CAS  Google Scholar 

  29. F. Yakuphanoglu, Y. Caglar, S. Ilican, M. Caglar, Phys. B 394, 86 (2007)

    CAS  Google Scholar 

  30. P. Scherrer, Kolloidchem. Ein Lehrb (Springer, Berlin, 1912), pp. 387–409

    Google Scholar 

  31. J.I. Langford, A.J.C. Wilson, J. Appl. Crystallogr. 11, 102 (1978)

    CAS  Google Scholar 

  32. V. Uvarov, I. Popov, Mater. Charact. 85, 111 (2013)

    CAS  Google Scholar 

  33. T. Hurma, M. Caglar, Mater. Sci. Semicond. Process. 110, 104949 (2020)

    CAS  Google Scholar 

  34. J. Singh, S. Ranwa, J. Akhtar, M. Kumar, AIP Adv. 5, 067140 (2015)

    Google Scholar 

  35. J. Tauc, Amorphous and Liquid Semiconductors (Taylor & Francis, London, 1974)

    Google Scholar 

  36. N.R. Yogamalar, A. Chandra Bose, Appl. Phys. A 103, 33 (2011)

    CAS  Google Scholar 

  37. F. Zahedi, R.S. Dariani, S.M. Rozati, Mater. Sci. Semicond. Process. 16, 245 (2013)

    CAS  Google Scholar 

  38. M. Rajendra Prasad, M. Haris, M. Sridharan, J. Mater. Sci. Mater. Electron. 28, 11367 (2017)

    CAS  Google Scholar 

  39. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices (Sze - 2nd Edition) (1981).

  40. R. Pietruszka, G. Luka, K. Kopalko, E. Zielony, P. Bieganski, E. Placzek-Popko, M. Godlewski, Mater. Sci. Semicond. Process. 25, 190 (2014)

    CAS  Google Scholar 

  41. E. Arslan, Y. Badali, Ş Altındal, E. Özbay, J. Mater. Sci. Mater. Electron. 31, 13167 (2020)

    CAS  Google Scholar 

  42. P. Klason, M.M. Rahman, Q.H. Hu, O. Nur, R. Turan, M. Willander, Microelectron. J. 40, 706 (2009)

    CAS  Google Scholar 

  43. S.K. Singh, P. Hazra, Appl. Surf. Sci. 400, 206 (2017)

    CAS  Google Scholar 

  44. G. Algün, N. Akçay, Appl. Phys. A 125, 1 (2019)

    Google Scholar 

  45. A. Gholizadeh, A. Reyhani, P. Parvin, S.Z. Mortazavi, J. Phys. D 50, 185501 (2017)

    Google Scholar 

  46. R. Pietruszka, R. Schifano, T.A. Krajewski, B.S. Witkowski, K. Kopalko, L. Wachnicki, E. Zielony, K. Gwozdz, P. Bieganski, E. Placzek-Popko, M. Godlewski, Sol. Energy Mater. Sol. Cells 147, 164 (2016)

    CAS  Google Scholar 

  47. J.H. Werner, Appl. Phys. A 47, 291 (1988)

    Google Scholar 

  48. Z. Feng, R. Jia, B. Dou, H. Li, Z. Jin, X. Liu, F. Li, W. Zhang, C. Wu, Sol. Energy 115, 770 (2015)

    CAS  Google Scholar 

  49. G.G. Untila, T.N. Kost, A.B. Chebotareva, Sol. Energy 127, 184 (2016)

    CAS  Google Scholar 

  50. G.G. Untila, T.N. Kost, A.B. Chebotareva, Sol. Energy 181, 148 (2019)

    CAS  Google Scholar 

  51. A. Ali, B. Hussain, and A. Ebong, in 2016 IEEE 43rd Photovolt. Spec. Conf. (IEEE, 2016), pp. 0591–0594.

  52. A.A. El-Amin, Silicon 9, 385 (2017)

    CAS  Google Scholar 

  53. D. Mukhamedshina, K. Mit, N. Chuchvaga, N. Tokmoldin, Mod. Electron. Mater. 3, 158 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Scientific Research Center Coordination Unit of Istanbul University. Project Numbers are FYL-2017-24168 and 58255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namık Akçay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akçay, N. Effect of fluorine doping concentration on efficiency of ZnO/p-Si heterojunction solar cells fabricated by spray pyrolysis. J Mater Sci: Mater Electron 31, 22467–22477 (2020). https://doi.org/10.1007/s10854-020-04747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04747-z

Navigation