Skip to main content
Log in

Exploring the interaction between “site-markers, aspirin and esterase-like activity” ternary systems on the human serum albumin: direct evidence for modulation of catalytic activity of the protein in different inhibition modes

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Albumin which is the most abundant drug carrier protein in plasma controls the distribution aspect of drug pharmacokinetics. The aim of this study has been to elucidate the concurrent binding behavior of indomethacin/ibuprofen/heme to HSA under the effect of aspirin-mediated protein acetylation and also to explore the esterase-like catalytic property of the unmodified/modified proteins, as binary or ternary systems, by using various spectroscopic and molecular docking techniques. We found that aspirin-based modification of HSA affects the protein conformation as well as ligand binding at sites I–III. Decrease in pNPA-mediated esterase activity of HSA in different reversible inhibition modes, upon the protein–ligand interactions, was also documented, an issue that may receive considerable attention for computational prodrug design in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Khodarahmi, S.A. Karimi, M.R.A. Kooshk, S.A. Ghadami, S. Ghobadi, M. Amani, Comparative spectroscopic studies on drug binding characteristics and protein surface hydrophobicity of native and modified forms of bovine serum albumin: possible relevance to change in protein structure/function upon non-enzymatic glycation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 89, 177–186 (2012)

    Article  CAS  Google Scholar 

  2. I. Petitpas, T. Grüne, A.A. Bhattacharya, S. Curry, Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. J. Mol. Biol. 314, 955–960 (2001)

    Article  CAS  Google Scholar 

  3. I. Petitpas, C.E. Petersen, C.-E. Ha, A.A. Bhattacharya, P.A. Zunszain, J. Ghuman, N.V. Bhagavan, S. Curry, Structural basis of albumin–thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc. Natl. Acad. Sci. 100, 6440–6445 (2003)

    Article  CAS  Google Scholar 

  4. M. Wardell, Z. Wang, J.X. Ho, J. Robert, F. Ruker, J. Ruble, D.C. Carter, The atomic structure of human methemalbumin at 1.9 Å. Biochem. Biophys. Res. Commun. 291, 813–819 (2002)

    Article  CAS  Google Scholar 

  5. J. Ghuman, P.A. Zunszain, I. Petitpas, A.A. Bhattacharya, M. Otagiri, S. Curry, Structural basis of the drug-binding specificity of human serum albumin. J. Mol. Biol. 353, 38–52 (2005)

    Article  CAS  Google Scholar 

  6. N. Bijari, Y. Shokoohinia, M.R. Ashrafi-Kooshk, S. Ranjbar, S. Parvaneh, M. Moieni-Arya, R. Khodarahmi, Spectroscopic study of interaction between osthole and human serum albumin: identification of possible binding site of the compound. J. Lumin. 143, 328–336 (2013)

    Article  CAS  Google Scholar 

  7. N. Moradi, M.R. Ashrafi-Kooshk, S. Ghobadi, M. Shahlaei, R. Khodarahmi, Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: does esterase activity affect microenvironment of drug binding sites on the protein? J. Lumin. 160, 351–361 (2015)

    Article  CAS  Google Scholar 

  8. J. Zhang, H.-H. Sun, Y.-Z. Zhang, L.-Y. Yang, J. Dai, Y. Liu, Interaction of human serum albumin with indomethacin: spectroscopic and molecular modeling studies. J. Solut. Chem. 41, 422–435 (2012)

    Article  CAS  Google Scholar 

  9. S. Ranjbar, Y. Shokoohinia, S. Ghobadi, N. Bijari, S. Gholamzadeh, N. Moradi, M.R. Ashrafi-Kooshk, A. Aghaei, R. Khodarahmi, Studies of the interaction between isoimperatorin and human serum albumin by multispectroscopic method: identification of possible binding site of the compound using esterase activity of the protein. Sci. World J. 2013, 305081 (2013). https://doi.org/10.1155/2013/305081

  10. G. Zhang, N. Zhao, L. Wang, Fluorescence spectrometric studies on the binding of puerarin to human serum albumin using warfarin, ibuprofen and digitoxin as site markers with the aid of chemometrics. J. Lumin. 131, 2716–2724 (2011)

    Article  CAS  Google Scholar 

  11. X.M. He, D.C. Carter, Atomic structure and chemistry of human serum albumin. Nature 358, 209–215 (1992)

    Article  CAS  Google Scholar 

  12. Y. Ozeki, Y. Kurono, T. Yotsuyanagi, K. Ikeda, Effects of drug binding on the esterase activity of human serum albumin: inhibition modes and binding sites of anionic drugs. Chem. Pharm. Bull. 28, 535–540 (1980)

    Article  CAS  Google Scholar 

  13. G. Sudlow, D. Birkett, D. Wade, Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol. 12, 1052–1061 (1976)

    CAS  Google Scholar 

  14. F. Ge, C. Chen, D. Liu, B. Han, X. Xiong, S. Zhao, Study on the interaction between theasinesin and human serum albumin by fluorescence spectroscopy. J. Lumin. 130, 168–173 (2010)

    Article  CAS  Google Scholar 

  15. Y.-S. Li, Y.-S. Ge, Y. Zhang, A.-Q. Zhang, S.-F. Sun, F.-L. Jiang, Y. Liu, Interaction of coomassie brilliant blue G250 with human serum albumin: probing of the binding mechanism and binding site by spectroscopic and molecular modeling methods. J. Mol. Struct. 968, 24–31 (2010)

    Article  CAS  Google Scholar 

  16. S. Nafisi, G.B. Sadeghi, A. PanahYab, Interaction of aspirin and vitamin C with bovine serum albumin. J. Photochem. Photobiol. B 105, 198–202 (2011)

    Article  CAS  Google Scholar 

  17. B. Bojko, A. Sułkowska, M. Maciążek, J. Rownicka, F. Njau, W. Sułkowski, Changes of serum albumin affinity for aspirin induced by fatty acid. Int. J. Biol. Macromol. 42, 314–323 (2008)

    Article  CAS  Google Scholar 

  18. J. Hirsh, E.W. Salzman, L. Harker, V. Fuster, J.E. Dalen, J.A. Cairns, R. Collins, Aspirin and other platelet active drugs: relationship among dose, effectiveness, and side effects. CHEST J. 95, 12S–18S (1989)

    CAS  Google Scholar 

  19. H. Watanabe, S. Tanase, K. Nakajou, T. Maruyama, U. Kragh-Hansen, M. Otagiri, Role of Arg-410 and Tyr-411 in human serum albumin for ligand binding and esterase-like activity. Biochem. J. 349, 813–819 (2000)

    Article  CAS  Google Scholar 

  20. F. Yang, C. Bian, L. Zhu, G. Zhao, Z. Huang, M. Huang, Effect of human serum albumin on drug metabolism: structural evidence of esterase activity of human serum albumin. J. Struct. Biol. 157, 348–355 (2007)

    Article  CAS  Google Scholar 

  21. K.M.K. Sand, M. Bern, J. Nilsen, H.T. Noordzij, I. Sandlie, J.T. Andersen, Unraveling the interaction between FcRn and albumin: opportunities for design of albumin-based therapeutics. Front. Immunol. 5, 682 (2015). https://doi.org/10.3389/fimmu.2014.00682

    Article  Google Scholar 

  22. P. Ascenzi, M. Fasano, Allostery in a monomeric protein: the case of human serum albumin. Biophys. Chem. 148, 16–22 (2010)

    Article  CAS  Google Scholar 

  23. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    CAS  Google Scholar 

  24. H. Svensson, Fractionation of serum with ammonium sulfate and water dialysis, studied by electrophoresis. J. Biol. Chem. 139, 805–825 (1941)

    CAS  Google Scholar 

  25. J.H. Bergloef, S. Eriksson, J. Curling, Chromatographic preparation and in vitro properties of albumin from human plasma. J. Appl. Biochem. 5, 282–292 (1982)

    Google Scholar 

  26. R.F. Chen, Removal of fatty acids from serum albumin by charcoal treatment. J. Biol. Chem. 242, 173–181 (1967)

    CAS  Google Scholar 

  27. M.S. Liyasova, L.M. Schopfer, O. Lockridge, Reaction of human albumin with aspirin in vitro: mass spectrometric identification of acetylated lysines 199, 402, 519, and 545. Biochem. Pharmacol. 79, 784–791 (2010)

    Article  CAS  Google Scholar 

  28. G.E. Means, M.L. Bender, Acetylation of human serum albumin by p-nitrophenyl acetate. Biochemistry 14, 4989–4994 (1975)

    Article  CAS  Google Scholar 

  29. Y. Pocker, J. Stone, The catalytic versatility of erythrocyte carbonic anhydrase. III. Kinetic studies of the enzyme-catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry 6, 668–678 (1967)

    Article  CAS  Google Scholar 

  30. S.L. Snyder, P.Z. Sobocinski, An improved 2,4,6-trinitrobenzenesulfonic acid method for the determination of amines. Anal. Biochem. 64, 284–288 (1975)

    Article  CAS  Google Scholar 

  31. X. Wu, J. Liu, Q. Wang, W. Xue, X. Yao, Y. Zhang, J. Jin, Spectroscopic and molecular modeling evidence of clozapine binding to human serum albumin at subdomain IIA. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79, 1202–1209 (2011)

    Article  CAS  Google Scholar 

  32. R.L. Joseph, R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, New York, 1999)

    Google Scholar 

  33. M. Eftink, C. Ghiron, Exposure of tryptophanyl residues and protein dynamics. Biochemistry 16, 5546–5551 (1977)

    Article  CAS  Google Scholar 

  34. X.-Z. Feng, Z. Lin, L.-J. Yang, C. Wang, C.-L. Bai, Investigation of the interaction between acridine orange and bovine serum albumin. Talanta 47, 1223–1229 (1998)

    Article  CAS  Google Scholar 

  35. H.-N. Hou, Z.-D. Qi, Y.-W. OuYang, F.-L. Liao, Y. Zhang, Y. Liu, Studies on interaction between Vitamin B12 and human serum albumin. J. Pharm. Biomed. Anal. 47, 134–139 (2008)

    Article  CAS  Google Scholar 

  36. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  CAS  Google Scholar 

  37. D. van der Spoel, E. Lindahl, B. Hess, the GROMACS development team, GROMACS User Manual Version 4.6. 7 (2014)

  38. D.M.F. Van Aalten, R. Bywater, J.B. Findlay, M. Hendlich, R.W. Hooft, G. Vriend, PRODRG: a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J. Comput. Aided Mol. Des. 10, 255–262 (1996)

    Article  Google Scholar 

  39. H.J. Berendsen, J.P. Postma, W.F. van Gunsteren, J. Hermans, Interaction models for water in relation to protein hydration, in Intermolecular Forces, ed. by B. Pullman (Springer, Berlin, 1981), pp. 331–342

    Chapter  Google Scholar 

  40. R. Fletcher, M.J. Powell, A rapidly convergent descent method for minimization. Comput. J. 6, 163–168 (1963)

    Article  Google Scholar 

  41. G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007)

    Article  Google Scholar 

  42. R. Martoňák, A. Laio, M. Parrinello, Predicting crystal structures: the Parrinello–Rahman method revisited. Phys. Rev. Lett. 90, 075503 (2003)

    Article  Google Scholar 

  43. B. Hess, H. Bekker, H.J. Berendsen, J.G. Fraaije, LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997)

    Article  CAS  Google Scholar 

  44. T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N· log (N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)

    Article  CAS  Google Scholar 

  45. H. Grubmüller, H. Heller, A. Windemuth, K. Schulten, Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions. Mol. Simul. 6, 121–142 (1991)

    Article  Google Scholar 

  46. L.-J. Ball, C.M. Goult, J.A. Donarski, J. Micklefield, V. Ramesh, NMR structure determination and calcium binding effects of lipopeptide antibiotic daptomycin. Org. Biomol. Chem. 2, 1872–1878 (2004)

    Article  CAS  Google Scholar 

  47. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009)

    Article  CAS  Google Scholar 

  48. N.A. Kratochwil, W. Huber, F. Müller, M. Kansy, P.R. Gerber, Predicting plasma protein binding of drugs: a new approach. Biochem. Pharmacol. 64, 1355–1374 (2002)

    Article  CAS  Google Scholar 

  49. S.K. Chaturvedi, E. Ahmad, J.M. Khan, P. Alam, M. Ishtikhar, R.H. Khan, Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach. Mol. BioSyst. 11, 307–316 (2015)

    Article  CAS  Google Scholar 

  50. N. Zaidi, M.R. Ajmal, G. Rabbani, E. Ahmad, R.H. Khan, A comprehensive insight into binding of hippuric acid to human serum albumin: a study to uncover its impaired elimination through hemodialysis. PloS ONE 8, e71422 (2013)

    Article  CAS  Google Scholar 

  51. B.M. Baker, K.P. Murphy, [14] Prediction of binding energetics from structure using empirical parameterization. Methods Enzymol. 295, 294–315 (1998)

    Article  CAS  Google Scholar 

  52. P.D. Ross, S. Subramanian, Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20, 3096–3102 (1981)

    Article  CAS  Google Scholar 

  53. Y. Kurono, T. Maki, T. Yotsuyanagi, K. Ikeda, Esterase-like activity of human serum albumin: structure-activity relationships for the reactions with phenyl acetates and p-nitrophenyl esters. Chem. Pharm. Bull. 27, 2781–2786 (1979)

    Article  CAS  Google Scholar 

  54. A. Sułkowska, Interaction of drugs with bovine and human serum albumin. J. Mol. Struct. 614, 227–232 (2002)

    Article  Google Scholar 

  55. S. Esmaeili, M.R. Ashrafi-Kooshk, K. Khaledian, H. Adibi, S. Rouhani, R. Khodarahmi, Degradation products of the artificial azo dye, Allura red, inhibit esterase activity of carbonic anhydrase II: A basic in vitro study on the food safety of the colorant in terms of enzyme inhibition. Food Chem. 213, 494–504 (2016)

    Article  CAS  Google Scholar 

  56. H. Lineweaver, D. Burk, The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56, 658–666 (1934)

    Article  CAS  Google Scholar 

  57. Y. Wang, H. Yu, X. Shi, Z. Luo, D. Lin, M. Huang, Structural mechanism of ring-opening reaction of glucose by human serum albumin. J. Biol. Chem. 288, 15980–15987 (2013)

    Article  CAS  Google Scholar 

  58. M. Siah, M.H. Farzaei, M.R. Ashrafi-Kooshk, H. Adibi, S.S. Arab, M.R. Rashidi, R. Khodarahmi, Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: an in vitro study. Bioorg. Chem. 64, 74–84 (2016)

    Article  CAS  Google Scholar 

  59. H. Rimac, Ž. Debeljak, M. Bojić, L. Miller, Displacement of drugs from human serum albumin: from molecular interactions to clinical significance. Curr. Med. Chem. 24, 1930–1947 (2017)

    Article  CAS  Google Scholar 

  60. A. Jangholi, M.R. Ashrafi-Kooshk, S.S. Arab, G. Riazi, F. Mokhtari, M. Poorebrahim, H. Mahdiuni, B.I. Kurganov, A.A. Moosavi-Movahedi, R. Khodarahmi, Appraisal of role of the polyanionic inducer length on amyloid formation by 412-residue 1N4R Tau protein: a comparative study. Arch. Biochem. Biophys. 609, 1–19 (2016)

    Article  CAS  Google Scholar 

  61. M. Kiselev, I. Gryzunov, G. Dobretsov, M. Komarova, Size of a human serum albumin molecule in solution. Biofizika 46, 423–427 (2001)

    CAS  Google Scholar 

  62. M. Shahlaei, B. Rahimi, M.R. Ashrafi-Kooshk, K. Sadrjavadi, R. Khodarahmi, Probing of possible olanzapine binding site on human serum albumin: combination of spectroscopic methods and molecular dynamics simulation. J. Lumin. 158, 91–98 (2015)

    Article  CAS  Google Scholar 

  63. U. Kragh-Hansen, V.T.G. Chuang, M. Otagiri, Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol. Pharm. Bull. 25, 695–704 (2002)

    Article  CAS  Google Scholar 

  64. O. Lockridge, W. Xue, A. Gaydess, H. Grigoryan, S.-J. Ding, L.M. Schopfer, S.H. Hinrichs, P. Masson, Pseudo-esterase activity of human albumin slow turnover on tyrosine 411 and stable acetylation of 82 residues including 59 lysines. J. Biol. Chem. 283, 22582–22590 (2008)

    Article  CAS  Google Scholar 

  65. O. Phuangsawai, S. Hannongbua, M.P. Gleeson, Elucidating the origin of the esterase activity of human serum albumin using QM/MM calculations. J. Phys. Chem. B 118, 11886–11894 (2014)

    Article  CAS  Google Scholar 

  66. P. Ascenzi, A. Di Masi, G. Fanali, M. Fasano, Heme-based catalytic properties of human serum albumin. Cell Death Discov. 1, 15025 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Research Council of Kermanshah University of Medical Sciences, Kermanshah, Iran, for the financial supports (Grant No. 93102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Khodarahmi.

Additional information

This work was performed in partial fulfillment of the requirements for M.Sc. degree of M. Almasi, in Department of Clinical Biochemistry and Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 508 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, S., Almasi, M., Vaisi-Raygani, A. et al. Exploring the interaction between “site-markers, aspirin and esterase-like activity” ternary systems on the human serum albumin: direct evidence for modulation of catalytic activity of the protein in different inhibition modes. J IRAN CHEM SOC 15, 555–573 (2018). https://doi.org/10.1007/s13738-017-1256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1256-0

Keywords

Navigation