Skip to main content
Log in

A first-principle DFT study of solvent effects on metiamide tautomers and imaginary interactions with H2-receptors

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Metiamide is a class of medications called H2-receptor antagonist or H2 blockers. It decreases the amount of acid made in the stomach. It is commonly used in the treatment for peptic ulcer disease and gastroesophageal reflux disease. In this study, the metiamide tautomer stability, structural data, HOMO and LUMO (energies and shapes), ΔΕ HOMO–LUMO gaps, UV–visible data and graphs, dipole moments, Mulliken charges, and thermodynamic and kinetic stabilities in aqueous media as a biological solvent and some of the different media (vacuum, H2O, Et-OH and DMSO) were investigated for the tautomers of metiamide by the density functional theory DFT-B3LYP/6-31G* method. The results presented that the probability of the adaptability and compatibility of which tautomer (T1T6) are better than the other tautomers for interactions with the pattern and structural map of the H2-receptor. The diversities of the interaction points and mosaic patterns of the T3 and T4 tautomers in H2O media with the imaginary H2-receptor were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. J.P. Kahrilas, N. Engl. J. Med. 359(16), 1700–1707 (2008)

    Article  CAS  Google Scholar 

  2. M. Khan, J. Santana, C. Donnellan, C. Preston, P. Moayyedi, Cochrane Database Syst. Rev. 18(2), CD003244 (2007)

    Google Scholar 

  3. I.L. Salom, S.E. Silvis, A. Doscherholmen, Scand. J. Gastroenterol. 17(1), 129–131 (1982)

    Article  CAS  Google Scholar 

  4. J. Black et al., Metiamide—an orally active histamine H2-receptor antagonist. Agents Actions 43(3–4), 91–96 (1994)

    Article  CAS  Google Scholar 

  5. J.G. Hardman, A.W. Petri, Goodman and Gilman’s, the Pharmacological Basis of Therapeutics, 9th edn. (McGraw-Hill, New York, 1996), pp. 1092–1094

    Google Scholar 

  6. S. Mallow, J.A. Rebuck, T. Osler et al., Curr. Surg. 61(5), 452–458 (2004)

    Article  Google Scholar 

  7. R.B. Canani, P. Cirillo, P. Roggero et al., Pediatrics 117(5), 817–820 (2006)

    Article  Google Scholar 

  8. E. Untersmayr, N. Bakos, I. Scholl et al., FASEB J. 19(6), 656–658 (2005)

    CAS  Google Scholar 

  9. C.R. Ganellin, G.J. Durant, J.C. Emmett, Some chemical aspects of histamine H2-receptor antagonists, in Federation proceedings, vol. 35, no. 8, pp. 1924–1930)

  10. T. Nguyen, D.A. Shapiro, S.R. George, V. Setola, D.K. Lee, R. Cheng et al., Discovery of a novel member of the histamine receptor family. Mol. Pharmacol. 59(3), 427–433 (2001)

    CAS  Google Scholar 

  11. M.J. Smit et al., Inverse agonism of histamine H2 antagonist accounts for upregulation of spontaneously active histamine H2 receptors. Proc. Natl. Acad. Sci. 93(13), 6802–6807 (1996)

    Article  CAS  Google Scholar 

  12. D.U. Preiss, C.F. Code, Effect of the H2-receptor antagonists (burimamide and metiamide) on gastric secretion stimulated by histamine and its methyl derivatives. J. Pharmacol. Exp. Ther. 193(2), 614–620 (1975)

    CAS  Google Scholar 

  13. L.S.P. Wickramasinghe, S.K. Basu, Br. Med. J. 289(6454), 1272 (1984)

    Article  Google Scholar 

  14. W.S. Ruddell, A.T. Axon, J.M. Findlay et al., Lancet 1, 672–674 (1980)

    Article  CAS  Google Scholar 

  15. E. Untersmayr, N. Bakos, I. Scholl et al., FASEB J. 19(6), 656–658 (2005)

    CAS  Google Scholar 

  16. A.A. Taherpour, A. Mozafari, S. Ranjbar, S. Taban, Struct. Chem. 26(2), 517–529 (2015)

    Article  CAS  Google Scholar 

  17. A.A. Taherpour, R. Rahimizadeh, Med. Chem. Res. (2016). doi:10.1007/s00044-016-1612-0)

    Google Scholar 

  18. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, 1st edn. (Oxford University Press, Oxford, 2001), pp. 204–206, 586–588

    Google Scholar 

  19. Tagamet, Discovery of Histamine H 2 -receptor Antagonists, National Historic Chemical Landmarks (American Chemical Society, Washington, 2012)

    Google Scholar 

  20. M. Targema, N.O. Obi-Egbedi, M.D. Adeoye, Comput. Theor. Chem. 1012, 47–53 (2013)

    Article  CAS  Google Scholar 

  21. S. Shaji, S.M. Eappen, T.M.A. Rasheed, K.P.R. Nair, Spectrochem. Acta Part A 60, 351–355 (2004)

    Article  CAS  Google Scholar 

  22. M.M. Islam, M.D.H. Bhiuyan, T. Bredow, A.C. Try, Comput. Theor. Chem. 967, 165–170 (2011)

    Article  CAS  Google Scholar 

  23. B. Kosar, C. Albayrak, C.C. Ersanli, M. Odabasoglu, O. Buyukgungor, Spectrochim. Acta, Part A 93, 1–9 (2012)

    Article  CAS  Google Scholar 

  24. P.L. Praveen, D.P. Ojha, Cryst. Res. Technol. 47, 91–100 (2012)

    Article  Google Scholar 

  25. P.M. Anbarasan, P.S. Kumar, M. Geetha, R. Govindan, S. Manimegalai, K. Velmurugan, Recent Res. Sci. Technol. 2, 8–16 (2010)

    CAS  Google Scholar 

  26. N. Sundaraganesan, J. Karpagam, S. Sebastian, J.P. Conard, Spectrochem. Acta Part A 73, 11–19 (2009)

    Article  CAS  Google Scholar 

  27. A. Karakas, H. Unver, Spectrochim. Acta, Part A 75, 1492–1496 (2010)

    Article  Google Scholar 

  28. Y. Shao, L. Fusti-Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S.T. Brown, A.T.B. Gilbert, L.V. Slipchenko, S.V. Levchenko, D.P. O’Neill, R.A. DiStasio Jr., R.C. Lochan, T. Wang, G.J.O. Beran, N.A. Besley, J.M. Herbert, C.Y. Lin, T. Van Voorhis, S.H. Chien, A. Sodt, R.P. Steele, V.A. Rassolov, P.E. Maslen, P.P. Korambath, R.D. Adamson, B. Austin, J. Baker, E.F.C. Byrd, H. Dachsel, R.J. Doerksen, A. Dreuw, B.D. Dunietz, A.D. Dutoi, T.R. Furlani, S.R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R.Z. Khalliulin, P. Klunzinger, A.M. Lee, M.S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E.I. Proynov, P.A. Pieniazek, Y.M. Rhee, J. Ritchie, E. Rosta, C.D. Sherrill, A.C. Simmonett, J.E. Subotnik, H.L. Woodcock III, W. Zhang, A.T. Bell, A.K. Chakraborty, D.M. Chipman, F.J. Keil, A. Warshel, W.J. Hehre, H.F. Schaefer III, J. Kong, A.I. Krylov, P.M.W. Gill, M. Head-Gordon, B.J. Deppmeier, A.J. Driessen, T.S. Hehre, J.A. Johnson, P.E. Klunzinger, J.M. Leonard, I.N. Pham, W.J. Pietro, J. Yu, SPARTAN’10, build 1.0.1 (Wavefunction Inc., Irvine, 2011)

    Google Scholar 

  29. A. Dufert, D.B. Werz, J. Org. Chem. 73, 5514–5519 (2008)

    Article  Google Scholar 

  30. E. Kavitha, N. Sundaraganesan, S. Sebastian, Indian J. Pure Appl. Phys. 48, 20–30 (2010)

    CAS  Google Scholar 

  31. K.I. Ramachandran, G. Deepa, K. Namboori, Computational Chemistry and Molecular Modelling: Principles and Applications (Springer, Berlin, 2008)

    Google Scholar 

  32. M.F. Budyka, T.S. Zyubina, A.K. Zarkadis, J. Mol. Struct. (THEOCHEM) 594, 113–125 (2002)

    Article  CAS  Google Scholar 

  33. Y.O. Lee, T. Pradhan, K. No, J.S. Kim, Tetrahedron 68, 1704–1711 (2012)

    Article  CAS  Google Scholar 

  34. M. Amalanathan, I.H. Joe, V.K. Rastogi, J. Mol. Struct. 985, 48–56 (2011)

    Article  CAS  Google Scholar 

  35. H. Dorsett, A. White, Overview of Molecular Modelling and Ab-initio Molecular Orbital Methods Suitable for Use with Energetic Materials: A Review (DSTO Aeronautical and Maritime Research Laboratory, Australia, 2000)

    Google Scholar 

  36. P.W. Atkins, R.S. Friedman, Molecular Quantum Mechanics, 4th edn. (Oxford University Press, New York, 2004)

    Google Scholar 

  37. B. Grossmann, J. Heinze, T. Moll, C. Palivan, S. Ivan, G. Gescheidt, J. Phys. Chem. B 108, 4669–4672 (2004)

    Article  CAS  Google Scholar 

  38. G. Gece, Corros. Sci. 50, 2981–2992 (2008)

    Article  CAS  Google Scholar 

  39. P. Atkins, J. de Paula, Physical Chemistry, 8th edn. (Oxford University Press, New York, 2006)

    Google Scholar 

  40. R.G. Mortimer, Physical Chemistry, 3rd edn. (Elsevier Inc., USA, 2008)

    Google Scholar 

  41. K. Parimala, V. Balachandran, Spectrochim. Acta A Mol. Biomol. Spectrosc. 81(1), 711–723 (2011)

    Article  CAS  Google Scholar 

  42. http://en.wikipedia.org/w/index.php?title=Mulliken_population_analysis&oldid=572345005

  43. R.S. Mulliken, J. Chem. Phys. 23(10), 1833–1840 (1955)

    Article  CAS  Google Scholar 

  44. A.R. Leach, Molecular Modelling: Principles and Applications (Prentice Hall, Englewood Cliffs, 2011)

    Google Scholar 

  45. T. Schlik, Molecular Modeling and Simulation: An Interdisciplinary Guide (Interdisciplinary Applied Mathematics, 2nd edn. (Springer, Berlin, 2013)

    Google Scholar 

  46. W.S. Ohlinger, K.E. Philip, J.D. Bernard, J.H. Warren, J. Phys. Chem. A 113(10), 2165–2175 (2009)

    Article  CAS  Google Scholar 

  47. F.M. Bickelhaupt, N.J.R. van Eikema Hommes, C. Fonseca Guerra, E.J. Baerends, Organometallics 15(13), 2923–2931 (1996)

    Article  CAS  Google Scholar 

  48. A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83(2), 735–746 (1985)

    Article  CAS  Google Scholar 

  49. P. Salve, D. Gharge, R. Kirtawade, P. Dhabale, K. Burade, Int. J. Pharm. Technol. Res. 2(3), 2071–2074 (2010)

    CAS  Google Scholar 

  50. A.N. Mishra, A.C. Rana, Int. J. Chem. Sci. 7(3), 2208–2210 (2009)

    CAS  Google Scholar 

  51. S.C. Dash, N.N. Das, P. Mohanty, Indian J. Chem. Technol. 18, 132–136 (2011)

    CAS  Google Scholar 

  52. https://mc.usp.org/sites/default/files/documents/Ranitidine%20HCl%20Summary%20Validation%20Report-2013-04-12_0.pdf

  53. https://mc.usp.org/sites/default/files/documents/Ranitidine%20Injection%20Summary%20Validation%20Report-2013-05-31.pdf

  54. http://www.gsk.ca/english/docs-pdf/product-monographs/Zantac.pdf

  55. R.K. Murray, D.A. Bender, K.M. Botham, P.J. Kennelly, V.W. Rodwell, P.A. Weil, Harpers Illustrated Biochemistry (Lange Medical Book), 2012, 29th edn. (McGraw-Hill Companies, Inc., USA). ISBN-13: 978-0071765763.h. http://www.drugs.com/pro/cimetidine-injection.html

  56. http://www.medicinenet.com/script/main/art.asp?articlekey=10001

  57. http://www.medicinenet.com/cimetidine-injection/article.htm

  58. http://www.chemcraft.net/acidph2.html

  59. J. Řezáč, L. Šimová, P. Hobza, J. Chem. Theory Comput. 9(1), 364–369 (2013)

    Article  Google Scholar 

  60. I. Shavitt, R.J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

Download references

Acknowledgement

The corresponding author gratefully acknowledges Theoretical and Computational Research Center of Chemistry and Nano Sciences, Faculty of Chemistry, Razi University, Kermanshah, Iran, Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran and Health Technology Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avat Arman Taherpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taherpour, A.A., Chegeni, M.M.F., Khodaei, M.M. et al. A first-principle DFT study of solvent effects on metiamide tautomers and imaginary interactions with H2-receptors. J IRAN CHEM SOC 14, 1613–1632 (2017). https://doi.org/10.1007/s13738-017-1102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-017-1102-4

Keywords

Navigation