Skip to main content
Log in

Comparison of sample preparation methods for determination of free carbon in boron carbide by X-ray powder diffraction

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Several sample preparation methods were evaluated for determination of free carbon in boron carbide powders by quantitative X-ray diffraction method, including ultrasonication, wet ball milling and dry ball milling–wet mixing. Quantitation was based on measuring the integral peak area ratio of the diffraction lines of graphite (002) to boron carbide (012) in samples spiked with pure graphite. The dry milling–wet mixing method provided the best precision and accuracy in all the measurements as well as in determination of free carbon in a boron carbide reference material. There was a linear relationship between the integral peak area ratios and graphite added to boron carbide samples which were purified from their free carbon content. The method provided a low detection limit of 0.05 wt% free carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Thévenot, Boron carbide—a comprehensive review. J. Eur. Ceram. Soc. 6, 205–225 (1990)

    Article  Google Scholar 

  2. O. Conde, A.J. Silvestre, J.C. Oliveira, Influence of carbon content on the crystallographic structure of boron carbide films. Surf. Coat. Technol. 125, 141–146 (2000)

    Article  CAS  Google Scholar 

  3. M. Lee, Y.H. Yoo, Analysis of ceramic/metal armour systems. Int. J. Impact Eng. 25, 819–829 (2001)

    Article  Google Scholar 

  4. I. Yanase, R. Ogawara, H. Kobayashi, Synthesis of boron carbide powder from polyvinyl borate precursor. Mater. Lett. 63, 91–93 (2009)

    Article  CAS  Google Scholar 

  5. T.R. Pilladi, K. Ananthansivan, S. Anthonysamy, Synthesis of boron carbide from boric oxide-sucrose gel precursor. Powder Technol. 246, 247–251 (2013)

    Article  CAS  Google Scholar 

  6. M. Jazirehpour, H.-R. Baharvandi, A. Alizadeh, N. Ehsani, Facile synthesis of boron carbide elongated nanostructures via a simple in situ thermal evaporation process. Ceram. Int. 37, 1055–1061 (2011)

    Article  CAS  Google Scholar 

  7. A. Sinha, T. Mahata, B.P. Sharma, Carbothermal route for preparation of boron carbide powder from boric acid–citric acid gel precursor. J. Nucl. Mater. 301, 165–169 (2002)

    Article  CAS  Google Scholar 

  8. R. Jimbou, M. Saidoh, K. Nakamura, M. Akiba, S. Suzuki, Y. Gotoh, Y. Suzuki, A. Chiba, T. Yamaki, M. Nakagawa, K. Morita, B. Tsuchiya, New composite composed of boron carbide and carbon fiber with high thermal conductivity for first wall. J. Nucl. Mater. 233, 781–786 (1996)

    Article  Google Scholar 

  9. M.W. Mortensen, P.G. Sørensen, O. Björkdahl, M.R. Jensen, H.J. Gundersen, T. Bjørnholm, Preparation and characterization of boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy. Appl. Radiat. Isotopes 64, 315–324 (2006)

    Article  CAS  Google Scholar 

  10. W. Rafaniello, W.G. Moore, Method of Producing Boron Carbide. EP Patent No. 0414803 (1997)

  11. B.L. Grabchuk, P.S. Kislyi, Sintering of boron carbide containing small amounts of free carbon. Sov. Powder Metall. Metal Ceram. 14, 538–541 (1975)

    Article  Google Scholar 

  12. M. Bougoin, R. Fillit, F. Thevenot, H. Bruyas, Determination of free graphite in textured samples of boron carbide and boron carbide-silicon carbide composites. J. Less Common Met. 117, 215–223 (1986)

    Article  CAS  Google Scholar 

  13. D.K. Bose, K.U. Nair, C.K. Gupta, Production of high purity boron carbide. High Temp. Mater. Proc. 7, 133–140 (1986)

    Article  CAS  Google Scholar 

  14. A.M. Hadian, J.A. Bigdeloo, The effect of time, temperature and composition on boron carbide synthesis by sol-gel method. J. Mater. Eng. Perform. 17, 44–49 (2008)

    Article  CAS  Google Scholar 

  15. J.A. Bigdeloo, A.M. Hadian, Synthesis of high purity micron size boron carbide powder from B2O3/C precursor. Int. J. Recent Trends Eng. 1, 176–180 (2009)

    Google Scholar 

  16. K.A. Schwetz, J. Hassler, A wet chemical method for the determination of free carbon in boron carbide, silicon carbide and mixtures thereof. J. Less Common Met. 117, 7–15 (1986)

    Article  CAS  Google Scholar 

  17. T. Ogawa, K. Fukuda, Quick analysis of free carbon in metal carbide by plasma oxidation. J. Am. Ceram. Soc. 73, 2558–2560 (1990)

    Article  CAS  Google Scholar 

  18. P.R. Taylor, S.A. Pirzada, Ceramic carbide powder synthesis in a non-transferred arc plasma flow reactor. Mater. Manuf. Process 8, 501–517 (1993)

    Article  CAS  Google Scholar 

  19. Y.L. Krutskii, G.V. Galevskii, A. Kornilov, Oxidation of ultrafine powders of boron, vanadium and chromium carbides. Poroshk. Metall. 2, 47–50 (1983)

    Google Scholar 

  20. A. Alizadeh, E. Taheri-Nassaj, N. Ehsani, Synthesis of boron carbide powder by a carbothermic reduction method. J. Eur. Ceram. Soc. 24, 3227–3234 (2004)

    Article  CAS  Google Scholar 

  21. L.A. Mashkovich, A.F. Kuteinikov, in Method of Separating and Determining the Free Carbon in Materials Containing Refractory Compounds, ed. by G.V. Samsonov. Chemical Properties and Analysis of Refractory Compounds. Translated from Russian by G.D. Archard (Consultants Bureau, New York, 1972), p. 14

  22. M.I. Sokhor, G.V. Sofronov, in Method of Quantitative X-ray Analysis for Determining the Amount of Free Carbon in Boron Carbide, ed. by G.V. Samsonov. Chemical Properties and Analysis of Refractory Compounds. Translated from Russian by G.D. Archard (Consultants Bureau, New York, 1972), p. 6

  23. ASTM C 791–12, Standard Test Methods for Chemical, Mass Spectrometric, and Spectrochemical Analysis of Nuclear-Grade Boron Carbide (ASTM Annual Book, Philadelphia, 2012)

    Google Scholar 

  24. H. Schneider, B. Schulz, On the determination of free carbon in phases of the boron-carbon system. J. Nucl. Mater. 83, 322–323 (1979)

    Article  CAS  Google Scholar 

  25. T.N. Nazarchuk, L.N. Mekhanoshina, The oxidation of boron carbide. Sov. Powder Metall. Metal Ceram. 3, 123–126 (1964)

    Article  Google Scholar 

  26. R. Matschat, A. Dette, S. Richter, S. Recknagel, P. Barth, Certification of a boron carbide powder reference material for chemical analysis. J. Am. Ceram. Soc. 94, 4009–4016 (2011)

    Article  CAS  Google Scholar 

  27. T.R. Pilladi, K. Ananthasivan, S. Anthonysamy, V. Ganesan, Synthesis of nanocrystalline boron carbide from boric acid–sucrose gel precursor. J. Mater. Sci. 47, 1710–1718 (2012)

    Article  CAS  Google Scholar 

  28. F.G. Smith, The determination of copper in whetlerized carbon following destructive oxidation of carbon employing hot concentrated perchloric acid. Anal. Chim. Acta 13, 115–119 (1955)

    Article  CAS  Google Scholar 

  29. L.S. Zevin, G. Kimmel, I. Mureinik, Quantitative X-ray Diffractometry (Springer, New York, 1995)

    Book  Google Scholar 

  30. Y. Zhang, M. Lv, P. Rao, A. Shui, J. Wu, Quantitative XRD analysis of hydrothermally-derived leucite content in dental porcelain ceramics. J. Ceram. Soc. Japan 115, 329–332 (2007)

    Article  CAS  Google Scholar 

  31. C. Descourvieres, G. Douglas, L. Leyland, N. Hartog, H. Prommer, Geochemical reconstruction of the provenance, weathering and deposition of detrital-dominated sediments in the Perth Basin: The cretaceous leederville formation, south-west Australia. Sediment. Geol. 236, 62–76 (2011)

    Article  CAS  Google Scholar 

  32. A.P. Luz, M.M. Miglioli, T.M. Souza, S. Hashimoto, S. Zhang, V.C. Pandolfelli, Effect of Al4SiC4 on the Al2O3–SiC–SiO2–C refractory castables performance. Ceram. Inter. 38, 3791–3800 (2012)

    Article  CAS  Google Scholar 

  33. S.M. Tichapondwa, W.W. Focke, O. Del Fabbro, C. Kelly, Calcium sulfate as a possible oxidant in “green” silicon-based pyrotechnic time delay compositions. Propellants, Explos., Pyrotech. 35, 1–9 (2010)

    Google Scholar 

  34. S.J. Chipera, D.L. Bish, Fitting full X-ray diffraction patterns for quantitative analysis: a method for readily quantifying crystalline and disordered phases. Adv. Mater. Phys. Chem. 3, 47–53 (2013)

    Article  Google Scholar 

  35. M. Bouchacourt, F. Thevenot, Analytical investigations in the B–C system. J. Less Common Met. 82, 219–226 (1981)

    Article  CAS  Google Scholar 

  36. M. Beauvy, R. Angers, Method for the determination of free graphite in boron carbide. J. Less Common Met. 80, 227–233 (1981)

    Article  CAS  Google Scholar 

  37. R. Kleeberg, T. Monecke, S. Hillier, Clays Clay Miner. 56, 404 (2008)

    Article  CAS  Google Scholar 

  38. H.A. Gunatilaka, R. Till, A precise and accurate method for the quantitative determination of carbonate minerals by X-ray diffraction using a spiking technique. Min. Mag. 38, 481–487 (1971)

    Article  CAS  Google Scholar 

  39. M. Beauvy, Stoichiometric limits of carbon-rich boron carbide phases. J. Less Common Met. 90, 169–175 (1983)

    Article  CAS  Google Scholar 

  40. A.C. Titus, Boron carbide in the graphitization of the lampblack carbon brush constituent, in Proceedings of Fourth International Conference on Carbon, ed. by S. Mrozowski, M.L. Studebaker, P.L. Walker (Pergamon Press, Buffalo, New York, 1960), p. 703

  41. W.D. Smith, Boron carbide fibers from carbon fibers, in Boron and Refractory Borides, ed. by V.I. Matkovich (Springer-Verlag, Berlin, 1977), p. 541

    Chapter  Google Scholar 

  42. N. Hong, An Exploration of Neutron Detection in Semiconducting Boron Carbide. (PhD thesis, University of Nebraska, USA, 2012)

  43. E.A. Belenkov, S.V. Opalev, Transformation of graphite structure under mechanical grinding. Russ. Phys. J. 49, 822–827 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by the Sooreh Company, Isfahan, Islamic Republic of Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masoud Bakhshi or Mohammad K. Amini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshi, M., Arab, H. & Amini, M.K. Comparison of sample preparation methods for determination of free carbon in boron carbide by X-ray powder diffraction. J IRAN CHEM SOC 13, 1673–1681 (2016). https://doi.org/10.1007/s13738-016-0884-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0884-0

Keywords

Navigation