Skip to main content
Log in

Mechanical and thermal investigation of high-density polyethylene/multi-walled carbon nanotube/tungsten disulfide hybrid composites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

This study investigates the impact of addition of different weight percentages of tungsten disulphide (WS2) lubricant on the thermal and mechanical properties of high density polyethylene (HDPE) hybrid composites reinforced with a multi-walled carbon nanotube (MWCNT). HDPE composites were fabricated using a twin-screw extruder process employed to add reinforcement and lubricants in different weight percentages (%, by weight). X-ray diffraction (XRD) patterns indicated the distribution and dispersion of filler materials in the HDPE matrix. The quality of the composite was investigated by measuring the mechanical properties such as impact strength, hardness, tensile strength, and flexural strength. Thermogravimetric analysis (TGA) was employed to examine the thermal stability of the composite material. Main decomposition temperatures were determined using derivative thermogravimetry (DTG) analysis. Thermal transitions and degree of crystallisation (Xc) of the polymeric materials used were investigated by using differential scanning calorimetry (DSC) technique. The lubricant was added in three varying amounts of 2%, 4% and 8% (by weight) whilst MWCNT was maintained at 1% (by weight). The experimental results revealed that the composite with 2% (by weight) of WS2 provides better mechanical properties such as impact strength, flexural strength, tensile strength, and hardness. With an increase in lubricant percentage, agglomeration of particles is found to be dominant in the composite, and the composite with 4% (by weight) of WS2 displays better thermal properties, as determined using TGA, DTG and DSC analytical techniques.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Düzcükoğlu H (2009) Study on development of polyamide gears for improvement of load-carrying capacity. Tribol Int 42:1146–1153. https://doi.org/10.1016/j.triboint.2009.03.009

    Article  Google Scholar 

  2. Dabees S, Kamel BM, Tirth V, Elshalakny AB (2020) Experimental design of Al2O3/MWCNT/HDPE hybrid nanocomposites for hip joint replacement. Bioengineered 11:679–692. https://doi.org/10.1080/21655979.2020.1775943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karnati SR, Agbo P, Zhang L (2020) Applications of silica nanoparticles in glass/carbon fiber-reinforced epoxy nanocomposite. Compos Commun 17:32–41. https://doi.org/10.1016/j.coco.2019.11.003

    Article  Google Scholar 

  4. Daniel IM, Ishai O, Daniel IM, Daniel I (2006) Engineering mechanics of composite materials. Oxford University Press, New York

    Google Scholar 

  5. Al-Saleh MH, Sundararaj U (2011) Review of the mechanical properties of carbon nanofiber/polymer composites. Compos Part A Appl Sci Manuf 42:2126–2142. https://doi.org/10.1016/j.compositesa.2011.08.005

    Article  CAS  Google Scholar 

  6. Fouad H, Elleithy R (2011) High density polyethylene/graphite nano-composites for total hip joint replacements: processing and in vitro characterization. J Mech Behav Biomed Mater 4:1376–1383. https://doi.org/10.1016/j.jmbbm.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  7. Al-Saleh MH, Al-Saidi BA, Al-Zoubi RM (2016) Experimental and theoretical analysis of the mechanical and thermal properties of carbon nanotube/acrylonitrile-styrene-butadiene nanocomposites. Polymer 89:12–17. https://doi.org/10.1016/j.polymer.2016.01.053

    Article  CAS  Google Scholar 

  8. Demircan G, Kisa M, Ozen M, Acikgoz A, Işıker Y, Aytar E (2023) Nano-gelcoat application of glass fiber reinforced polymer composites for marine application: Structural, mechanical, and thermal analysis. Mar Pollut Bull 194:115412. https://doi.org/10.1016/j.marpolbul.2023.115412

    Article  CAS  PubMed  Google Scholar 

  9. Alharbi KAM (2019) Wear and mechanical contact behavior of polymer gears. J Tribol 141:1–10. https://doi.org/10.1115/1.4041020

    Article  CAS  Google Scholar 

  10. Singh PK, Siddhartha SAK (2017) An investigation on the effects of the various techniques over the performance and durability of polymer gears. Mater Today Proc 4:1606–1614. https://doi.org/10.1016/j.matpr.2017.01.184

    Article  Google Scholar 

  11. Afifi EM, Elshalakny AB, Osman TA, Kamel BM, Zian H (2018) Investigation of gear performance of MLNGPs as an additive on polyamide 6 spur gear. Fullerenes Nanotub Carbon Nanostruct 26:351–359. https://doi.org/10.1080/1536383X.2018.1438413

    Article  CAS  Google Scholar 

  12. Hu KH, Wang J, Schraube S, Xu YF, Hu XG, Stengler R (2009) Tribological properties of MoS2 nano-balls as filler in polyoxymethylene-based composite layer of three-layer self-lubrication bearing materials. Wear 266:1198–1207. https://doi.org/10.1016/j.wear.2009.03.036

    Article  CAS  Google Scholar 

  13. Zalaznik M, Kalin M, Novak S, Jakša G (2016) Effect of the type, size and concentration of solid lubricants on the tribological properties of the polymer PEEK. Wear 364–365:31–39. https://doi.org/10.1016/j.wear.2016.06.013

    Article  CAS  Google Scholar 

  14. Amrishraj D, Senthilvelan T (2018) Acrylonitrile butadiene styrene composites reinforced with nanozirconia and PTFE: mechanical and thermal behavior. Polym Compos 39:E1520–E1530. https://doi.org/10.1002/pc.24421

    Article  CAS  Google Scholar 

  15. Jyoti J, Singh BP, Arya AK, Dhakate SR (2016) Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv 6:3997–4006. https://doi.org/10.1039/c5ra25561a

    Article  CAS  Google Scholar 

  16. Jenson Joseph E, Panneerselvam K (2020) Investigation on the influence of tungsten particulate in mechanical and thermal properties of HD50MA180 high density polyethylene composites. Mater Res Express 7:045306. https://doi.org/10.1088/2053-1591/ab8586

    Article  CAS  Google Scholar 

  17. Amoroso L, Heeley EL, Ramadas SN, McNally T (2020) Crystallisation behaviour of composites of HDPE and MWCNTs: the effect of nanotube dispersion, orientation and polymer deformation. Polymer 201:122587. https://doi.org/10.1016/j.polymer.2020.122587

    Article  CAS  Google Scholar 

  18. Ozen M, Demircan G, Kisa M, Acikgoz A, Ceyhan G, Işıker Y (2022) Thermal properties of surface-modified nano-Al2O3/Kevlar fiber/epoxy composites. Mater Chem Phys 278:125689. https://doi.org/10.1016/j.matchemphys.2021.125689

    Article  CAS  Google Scholar 

  19. Liang H, Mirinejad MS, Asefnejad A, Baharifar H, Li X, Saber-Samandari S, Toghraie D, Khandan A (2022) Fabrication of tragacanthin gum-carboxymethyl chitosan bio-nanocomposite wound dressing with silver-titanium nanoparticles using freeze-drying method. Mater Chem Phys 279:125770. https://doi.org/10.1016/j.matchemphys.2022.125770

    Article  CAS  Google Scholar 

  20. Singh PK, Singh AK, Siddhartha AK, Sarkar P (2020) Optimizing the performance parameters of injection-molded polymer spur gears. Proc Inst Mech Eng Part L J Mater Des Appl 235:717–727. https://doi.org/10.1177/1464420720977561

    Article  CAS  Google Scholar 

  21. Goriparthi BK (2019) Mechanical, wear and fatigue behavior of functionalized CNTs reinforced POM/PTFE composites. IOP Publ Ltd 27:1–15. https://doi.org/10.1080/14484846.2018.1432089

    Article  Google Scholar 

  22. Singh AK, Siddhartha SPK (2017) Polymer spur gears behaviors under different loading conditions: a review. Proc Inst Mech Eng Part J J Eng Tribol 232:210–228. https://doi.org/10.1177/1350650117711595

    Article  Google Scholar 

  23. Khasraghi SS, Rezaei M (2015) Preparation and characterization of UHMWPE/HDPE/MWCNT melt-blended nanocomposites. J Thermoplast Compos Mater 28:305–326. https://doi.org/10.1177/0892705713484745

    Article  CAS  Google Scholar 

  24. Manjunatha S, Machappa T, Sunilkumar A, Ravikiran YT (2018) Tungsten disulfide: an efficient material in enhancement of AC conductivity and dielectric properties of polyaniline. J Mater Sci Mater Electron 29:11581–11590. https://doi.org/10.1007/s10854-018-9255-1

    Article  CAS  Google Scholar 

  25. Sunilkumar A, Manjunatha S, Machappa T, Chethan B, Ravikiran YT (2019) A tungsten disulphide–polypyrrole composite-based humidity sensor at room temperature. Bull Mater Sci 42:1–5. https://doi.org/10.1007/s12034-019-1955-5

    Article  CAS  Google Scholar 

  26. Jamnezhad S, Asefnejad A, Motififard M, Yazdekhasti H, Kolooshani A, Saber-Samandari S, Khandan A (2020) Development and investigation of novel alginate-hyaluronic acid bone fillers using freeze drying technique for orthopedic field. Nanomed Res J 5:306–315. https://doi.org/10.22034/NMRJ.2020.04.001

    Article  CAS  Google Scholar 

  27. Dabees S, Tirth V, Mohamed A, Kamel BM (2021) Wear performance and mechanical properties of MWCNT/HDPE nanocomposites for gearing applications. J Mater Res Technol 12:2476–2488. https://doi.org/10.1016/j.jmrt.2020.09.129

    Article  CAS  Google Scholar 

  28. Kazemi Z, Ghiasi R, Jamehbozorgi S (2019) A theoretical study of the influence of solvent polarity on the structure and spectral properties in the interaction of C 20 and Si 2 H 2. J Nanoanal 6:121–128

    Google Scholar 

  29. Daramola OO, Taiwo AS, Oladele IO, Olajide JL, Adeleke SA, Adewuyi BO, Sadiku ER (2021) Mechanical properties of high density polyethylene matrix composites reinforced with chitosan particles. Mater Today Proc 38:682–687. https://doi.org/10.1016/j.matpr.2020.03.695

    Article  CAS  Google Scholar 

  30. Kumar S, Ramesh MR, Doddamani M, Rangappa SM, Siengchin S (2022) Mechanical characterization of 3D printed MWCNTs/HDPE nanocomposites. Polym Test 114:107703. https://doi.org/10.1016/j.polymertesting.2022.107703

    Article  CAS  Google Scholar 

  31. Goriparthi BK, Naga Eswar Naveen P, Ravi Sankar H (2021) Performance evaluation of composite gears composed of POM, CNTs, and PTFE. Polym Compos 42:1123–1134. https://doi.org/10.1002/pc.25887

    Article  CAS  Google Scholar 

  32. Pundhir N, Zafar S, Pathak H (2019) Performance evaluation of HDPE/MWCNT and HDPE/kenaf composites. J Thermoplast Compos Mater 34:1315–1333. https://doi.org/10.1177/0892705719868278

    Article  CAS  Google Scholar 

  33. Beesetty P, Kale A, Patil B, Doddamani M (2020) Mechanical behavior of additively manufactured nanoclay/HDPE nanocomposites. Compos Struct 247:112442. https://doi.org/10.1016/j.compstruct.2020.112442

    Article  Google Scholar 

  34. Demircan G, Kisa M, Ozen M, Aktas B (2020) Surface-modified alumina nanoparticles-filled aramid fiber-reinforced epoxy nanocomposites: preparation and mechanical properties. Iran Polym J 29:253–264. https://doi.org/10.1007/s13726-020-00790-z

    Article  CAS  Google Scholar 

  35. Demircan G, Kisa M, Ozen M, Acikgoz A (2021) Quasi-static penetration behavior of glass-fiber-reinforced epoxy nanocomposites. Mech Compos Mater 57:503–516. https://doi.org/10.22364/mkm.57.4.08

    Article  CAS  Google Scholar 

  36. Demircan G, Ozen M, Kisa M, Acikgoz A, Işıker Y (2023) The effect of nano-gelcoat on freeze-thaw resistance of glass fiber-reinforced polymer composite for marine applications. Ocean Eng 269:113589. https://doi.org/10.1016/j.oceaneng.2022.113589

    Article  Google Scholar 

  37. Deepak J, Adarsha H, Keshavamurthy R, Ramkumar NP (2023) Analysis of thermal behaviour of carbon nanotubes-reinforced HDPE composites developed using FDM process. J Inst Eng Ser D 15:1–3. https://doi.org/10.1007/s40033-023-00493-8

    Article  CAS  Google Scholar 

  38. Ansari A, Akhtar MJ (2016) Investigation on electromagnetic characteristics, microwave absorption, thermal and mechanical properties of ferromagnetic cobalt-polystyrene composites in the X-band (8.4-12.4 GHz). RSC Adv 6:13846–13857. https://doi.org/10.1039/c5ra26489h

    Article  CAS  Google Scholar 

  39. Karak N (2012) Vegetable oil-based polymer composites. Woodhead Publishing

    Book  Google Scholar 

  40. Tarani E, Arvanitidis I, Christofilos D, Bikiaris DN (2023) Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: a comparative study. J Mater Sci 58:1621–1639. https://doi.org/10.1007/s10853-022-08125-4

    Article  CAS  Google Scholar 

  41. Badgayan ND, Sahu SK, Samanta S, Sreekanth PSR (2019) Evaluation of dynamic mechanical and thermal behavior of HDPE reinforced with MWCNT/h-BNNP: an attempt to find possible substitute for a metallic knee in transfemoral prosthesis. Int J Thermophys 40:1–20. https://doi.org/10.1007/s10765-019-2559-4

    Article  CAS  Google Scholar 

  42. Chan JX, Wong JF, Petrů M, Hassan A, Nirmal U, Othman N, Ilyas RA (2021) Effect of nanofillers on tribological properties of polymer nanocomposites: a review on recent development. Polymers 13:1–47. https://doi.org/10.3390/polym13172867

    Article  CAS  Google Scholar 

  43. Hazarika SJ, Mohanta D (2019) Revealing mechanical, tribological, and surface-wettability features of nanoscale inorganic fullerene-type tungsten disulfide dispersed in a polymer. J Mater Res 34:3666–3677. https://doi.org/10.1557/jmr.2019.301

    Article  CAS  Google Scholar 

  44. Amrishraj D, Senthilvelan T (2019) Development of wear mechanism maps for acrylonitrile butadiene styrene hybrid composites reinforced with nano zirconia and PTFE under dry sliding condition. J Tribol 141:021602. https://doi.org/10.1115/1.4041019

    Article  CAS  Google Scholar 

  45. Friedrich K, Lu Z, Hager AM (1995) Recent advances in polymer composites’ tribology. Wear 190:139–144. https://doi.org/10.1016/0043-1648(96)80012-3

    Article  CAS  Google Scholar 

  46. Ding J, Feng A, Li X, Ding S, Liu L, Ren W (2021) Properties, preparation, and application of tungsten disulfide: a review. J Phys D Appl Phys 54:173002. https://doi.org/10.1088/1361-6463/abd9e8

    Article  CAS  Google Scholar 

  47. Aldana PU, Dassenoy F, Vacher B, Le MT, Thiebaut B, Bouffet A (2016) Antispalling effect of WS2 nanoparticles on the lubrication of automotive gearboxes. Tribol Trans 59:178–188. https://doi.org/10.1080/10402004.2015.1061080

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Panneerselvam.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudarsanam, S.K., Panneerselvam, K. Mechanical and thermal investigation of high-density polyethylene/multi-walled carbon nanotube/tungsten disulfide hybrid composites. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01305-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01305-w

Keywords

Navigation