Skip to main content
Log in

Microwave-assisted aggregation of CO2-switchable polystyrene latexes prepared through emulsion polymerization using cationic stabilizers

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Microwave irradiation (MWI) is introduced as a novel trigger to aggregate CO2-switchable latexes. The polystyrene (PS) latexes were synthesized through emulsion polymerization in two ways (using polar monomer 2-dimethylaminoethyl methacrylate (DMAEMA) (as in situ copolymerization), and a well-defined block copolymer, poly(dimethylaminoethyl methacrylate-block-methyl methacrylate), PDMAEMA-b-PMMA as positively charged stabilizing moieties in the presence of 4,4'-(diazene-1,2-diyl) bis(N-(3-(dimethylamino) propyl)-4-methylpentanamide) (DABPA) as an “inistab” (initiator + colloidal stabilizer). Since the polymerization was conducted in acidic media using hydrochloric acid (HCl) to protonate stabilizers, PS latexes could be simply destabilized by adding NaOH. The destabilized latexes were redispersed by introducing CO2 plus sonication to yield CO2-switchable latexes. The particle size of the resultant latexes after redispersion was very similar to that of primary latexes, as measured by dynamic light scattering. MWI and conventional heating (CH) stimuli were applied to aggregate the CO2-switchable PS latex particles. The influence of different factors on the time required for aggregation and particle size changes of the synthesized latexes was studied. These two methods of destabilization of PS latexes produce completely different switching behavior. Findings revealed that microwave-assisted aggregation (MAA) relative to CH required less time, but an increase in particle size of the redispersed particles in comparison to the original latexes was observed. Therefore, MAA can be assumed as a promising trigger for the aggregation of CO2-responsive latexes. This facile aggregation process, which could reduce time and energy input, might be of high interest and importance in various applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu H, Yin H, Feng Y (2017) A CO2-switchable amidine monomer: synthesis and characterization. Des Monomers Polym 20:363–367

    Article  CAS  PubMed  Google Scholar 

  2. Liu P, Lu W, Wang WJ, Li BG, Zhu S (2014) Highly CO2/N2 switchable zwitterionic surfactant for pickering emulsions at ambient temperature. Langmuir 30:10248–10255

    Article  CAS  PubMed  Google Scholar 

  3. Wang K, Chen S, Zhang W (2017) A new family of thermo-, pH-, and CO2-responsive homopolymers of poly[oligo(ethylene glycol) (N-dialkylamino) methacrylate]s. Macromolecules 50:4686–4698

    Article  CAS  Google Scholar 

  4. Han D, Tong X, Boissière O, Zhao Y (2012) General strategy for making CO2-switchable polymers. ACS Macro Lett 1:57–61

    Article  CAS  PubMed  Google Scholar 

  5. Jin H, Jessop PG, Cunningham MF (2022) CO2-switchable PMMA latexes with controllable particle size prepared by surfactant-free emulsion polymerization. Colloid Polym Sci 300:375–385

    Article  CAS  Google Scholar 

  6. Li H, Li Q, Hao J, Xu Z, Sun D (2016) Preparation of CO2-responsive emulsions with switchable hydrophobic tertiary amine. Colloids Surfaces A Physicochem Eng Asp 502:107–113

    Article  CAS  Google Scholar 

  7. Ellis SN, Riabtseva A, Dykeman RR, Hargreaves S, Robert T, Champagne P, Cunningham MF, Jessop PG (2019) Nitrogen rich CO2-responsive polymers as forward osmosis draw solutes. Ind Eng Chem Res 58:22579–22586

    Article  CAS  Google Scholar 

  8. Jing X, Lu H, Wang B, Huang Z (2017) CO2-switchable polymeric vesicle-network structure transition induced by a hairpin-line molecular configuration conversion. J Appl Polym Sci 134:44417

    Article  Google Scholar 

  9. Viner KJ, Roy HM, Lee R, He O, Champagne P, Jessop PG (2019) Transesterification of soybean oil using a switchable-hydrophilicity solvent, 2-(dibutylamino)ethanol. Green Chem 21:4786–4791

    Article  CAS  Google Scholar 

  10. Furusho Y, Endo T (2013) Capture and release of CO2 by polyamidine. J Polym Sci A 51:3404–3411

    Article  CAS  Google Scholar 

  11. Jansen-van Vuuren RD, Naficy S, Ramezani M, Cunningham MF, Jessop P (2023) CO2-responsive gels. Chem Soc Rev 52:3470–3542

    Article  CAS  PubMed  Google Scholar 

  12. Shaikh A, Dai C, Sun Y, Foutou V, Zhao M, You Q, Zhao G, Sun X, Ding X, Bakhsh A, Liu J (2023) Formation and rheology of CO2-responsive anionic wormlike micelles based clear fracturing fluid system. J Dispers Sci Technol 44:736–749

    Article  CAS  Google Scholar 

  13. Lv M, Wang G, Jiang J (2023) CO2/N2 and light dual-stimuli responsive wormlike micelles based on CTAB and conventional compounds. J Dispers Sci Technol 44:1694–1702

    Article  CAS  Google Scholar 

  14. Liu H, Yuan X, Ho J, Cunningham MF, Oleschuk RD, Jessop PG (2020) A CO2-switchable surface on aluminium. Appl Surf Sci 525:146630

    Article  CAS  Google Scholar 

  15. Benedix RR, Poole H, Zauser D, Preisig N, Jessop PG, Stubenrauch C (2023) Surface and foaming properties of an anionic CO2-switchable tail surfactant. Tenside Surfact 60:269–276

    Article  CAS  Google Scholar 

  16. Inoue Y, Guo H, Honma T, Smith RL Jr (2021) Amino-functional biocarbon with CO2-responsive property for removing copper (II) ions from aqueous solutions. Colloids Surfaces A Physicochem Eng Asp 616:126304

    Article  CAS  Google Scholar 

  17. Fazel Dehkordi T, Shirin-Abadi AR, Karimipour K, Mahdavian AR (2021) CO2-, electric potential-, and photo-switchable-hydrophilicity membrane (x-SHM) as an efficient color-changeable tool for oil/water separation. Polymer 212:123250

    Article  Google Scholar 

  18. Cunningham MF, Jessop PG (2022) Carbon dioxide switchable polymers-recent developments and emerging applications. Macromol React Eng 16:2200031

    Article  CAS  Google Scholar 

  19. Dziejarski B, Serafin J, Andersson K, Krzyżyńska R (2023) CO2 capture materials: a review of current trends and future challenges. Mater Today Sustain 24:100483

    Article  Google Scholar 

  20. Darabi A, Jessop PG, Cunningham MF (2016) CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem Soc Rev 45:4391–4436

    Article  CAS  PubMed  Google Scholar 

  21. Cunningham MF, Jessop PG (2019) Carbon dioxide-switchable polymers: where are the future opportunities? Macromolecules 52:6801–6816

    Article  CAS  Google Scholar 

  22. Liu D, Huang Z, Suo Y, Zhu P, Tan J, Lu H (2018) CO2-Responsive surfactant-free microemulsion. Langmuir 34:8910–8916

    Article  CAS  PubMed  Google Scholar 

  23. Khakzad F, Mahdavian AR, Salehi-mobarakeh H, Shirin-abadi AR, Cunningham M (2016) Redispersible PMMA latex nanoparticles containing spiropyran with photo-, pH- and CO2- responsivity. Polymer 101:274–283

    Article  CAS  Google Scholar 

  24. Shirin-Abadi AR, Jessop PG, Cunningham MF (2017) In situ use of aqueous RAFT prepared poly(2-(diethylamino)ethyl methacrylate) as a stabilizer for preparation of CO2switchable latexes. Macromol React Eng 11:1–9

    Article  Google Scholar 

  25. Gariepy D, Zhang Q, Zhu S (2015) CO2-redispersible polymer latexes with low glass transition temperatures. Macromol Chem Phys 216:561–568

    Article  CAS  Google Scholar 

  26. Su X, Jiang Y, Jessop PG, Cunningham MF, Feng Y (2020) Photoinitiated TERP emulsion polymerization: a new member of the large family of preparation approaches for CO2-switchable latexes. Macromolecules 53:6018–6023

    Article  CAS  Google Scholar 

  27. Pinaud J, Kowal E, Cunningham M, Jessop P (2012) 2-(diethyl)aminoethyl methacrylate as a CO2-switchable comonomer for the preparation of readily coagulated and redispersed polymer latexes. ACS Macro Lett 1:1103–1107

    Article  CAS  PubMed  Google Scholar 

  28. Su X, Nishizawa K, Bultz E, Sawamoto M, Ouchi M, Jessop PG, Cunningham MF (2016) Living CO2-switchable latexes prepared via emulsion ATRP and AGET miniemulsion ATRP. Macromolecules 49:6251–6259

    Article  CAS  Google Scholar 

  29. Shirin-Abadi AR, Gorji M, Rezaee S, Jessop PG, Cunningham MF (2018) CO2-Switchable-hydrophilicity membrane (CO2-SHM) triggered by electric potential: faster switching time along with efficient oil/water separation. Chem Commun 54:8478–8481

    Article  Google Scholar 

  30. Diaz de Grenu B, Torres J, García-González J, Muñoz-Pina S, de Los RR, Costero AM, Amorós P, Ros-Lis JV (2021) Microwave-assisted synthesis of covalent organic frameworks: a review. Chemsuschem 14:208–233

    Article  CAS  PubMed  Google Scholar 

  31. Horikoshi S, Schiffmann RF, Fukushima J, Serpone N (2018) Microwave chemical and materials processing. Microwave chemical and materials processing 2018. Springer, Singapore, pp 33–45

    Chapter  Google Scholar 

  32. Wang P, Zhao J, Zhao Q, Ma X, Du X, Hao X, Tang B, Abudula A, Guan G (2022) Microwave-assisted synthesis of manganese oxide catalysts for total toluene oxidation. J Colloid Interface Sci 607:100–110

    Article  CAS  PubMed  Google Scholar 

  33. Qu J, Meng Q, Lin X, Han W, Jiang Q, Wang L, Hu Q, Zhang L, Zhang Y (2021) Microwave-assisted synthesis of β-cyclodextrin functionalized celluloses for enhanced removal of Pb (II) from water: Adsorptive performance and mechanism exploration. Sci Total Environ 752:141854

    Article  CAS  PubMed  Google Scholar 

  34. Pauzi N, Zain NM, Yusof NAA (2019) Microwave-assisted synthesis for environmentally ZnO nanoparticle synthesis. In: Proceedings of the 10th National Technical Seminar on Underwater System Technology 2018:541–546

  35. Mehta L, Wadgaonkar K, Suryawanshi M, Jagtap R (2019) Solvent-free microwave-assisted synthesis and characterization of polybenzoxazine as a thermochromic material for smart coatings. Colloid Polym Sci 297:795–798

    Article  CAS  Google Scholar 

  36. Iqbal FM, Iqbal S, Nasir B, Hassan W, Ahmed H, Iftikhar SY (2022) Formulation of captopril-loaded hydrogel by microwave-assisted free radical polymerization and its evaluation. Polym Bull 79:7613–7633

    Article  CAS  Google Scholar 

  37. Rajamohan R, Lee YR (2023) Microwave-assisted synthesis of copper oxide nanoparticles by apple peel extract and efficient catalytic reduction on methylene blue and crystal violet. J Mol Struct 1276:134803

    Article  CAS  Google Scholar 

  38. Shirin-Abadi AR, Avar S (2020) Preparation of switchable polymer latexes under elevated CO2 pressure by using 4,4’- (diazene-1,2-diyl) bis(N-(3- (dimethylamino)propyl)-4-methylpentanamide) as a novel CO2-switchable inistab. Polymer 212:123241

    Google Scholar 

  39. Shirin-Abadi AR, Darabi A, Jessop PG, Cunningham MF (2016) Tuning the aggregation and redispersion behavior of CO2-switchable latexes by a combination of DMAEMA and PDMAEMA-b-PMMA as stabilizing moieties. Polymer 106:303–312

    Article  Google Scholar 

  40. Beuermann S, Buback M, Davis TP, Gilbert RG, Hutchinson RA, Kajiwara A, Klumperman B, Russell GT (2000) Critically evaluated rate coefficients for free-radical polymerization, a Propagation rate coefficients for alkyl methacrylates. Macromol Chem Phys 1364:1355–1364

    Article  Google Scholar 

  41. Su X, Robert T, Mercer SM, Humphries C, Cunningham MF, Jessop PG (2013) A conventional surfactant becomes CO2-responsive in the presence of switchable water additives. Chem A Eur J 19:5595–5601

    Article  CAS  Google Scholar 

  42. Darabi A, Shirin-Abadi AR, Avar S, Cunningham MF (2018) Surfactant-free emulsion copolymerization of styrene and methyl methacrylate for preparation of water-redispersible polymeric powders. J Polym Sci A 56:2376–2381

    Article  CAS  Google Scholar 

  43. Tompsett GA, Conner WC, Yngvesson KS (2006) Microwave synthesis of nanoporous materials. ChemPhysChem 7:296–319

    Article  CAS  PubMed  Google Scholar 

  44. Su X, Jessop PG, Cunningham MF (2012) Surfactant-free polymerization forming switchable latexes that can be aggregated and redispersed by CO2 removal and then readdition. Macromolecules 45:666–670

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Rezaee Shirin-Abadi.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 152 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avar, S., Rezaee Shirin-Abadi, A. Microwave-assisted aggregation of CO2-switchable polystyrene latexes prepared through emulsion polymerization using cationic stabilizers. Iran Polym J (2024). https://doi.org/10.1007/s13726-024-01302-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13726-024-01302-z

Keywords

Navigation