Skip to main content
Log in

Bio-based polyamide nanocomposites of nanoclay, carbon nanotubes and graphene: a review

  • Review
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Bio-based polyamides (PAs) and their nanocomposites with nanoclay, carbon nanotubes (CNT) and graphene and their uses are studied mainly for automobile, flame retardant, packaging, and textile industries. Polyamides are renewable substances that have good processability and outstanding thermal properties. Polyamides and their composites are known as high-performance polymers because of their numerous applications in various industries such as automotive, medical, textile, etc. Studies on polyamide-based nanocomposite materials have been reported in the scientific literature for many years, as they significantly enhance the properties of various materials. These polymer nanocomposites are ecologically and economically important and they are employed in macromolecular chemistry and modern industries. We have conducted significant research works on naturally derived bio-based polyamides that have been synthesized using castor oil and vegetable oil for biodegradable applications. Solution, melt-blending, and in situ polymerization methods were used for the synthesis of polyamides and nanocomposites. Various properties of PA including magnetic, mechanical, surface, electrical and thermal properties are discussed and it is shown how these properties can be increased through its nanocomposites. In the end, we have discussed the applications of these polymer nanocomposites in the areas of flame retardancy, packaging, textile and automotive parts and focusing on the ecofriendly sustainability of polyamide nanocomposites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Kim HT, Baritugo KA, Hyun SM, Khang TU, Sohn YJ, Kang KH, Joo JC (2019) Development of metabolically engineered Corynebacterium glutamicum for enhanced production n of cadaverine and its use for the synthesis of bio-polyamide 510. ACS Sustain Chem Eng 8:129–138

    Article  Google Scholar 

  2. Smith JK, Hounshell DA, Wallace H (1985) Carothers and fundamental research at Du Pont. Science 229:436–442

    Article  CAS  PubMed  Google Scholar 

  3. Deopura BL, Alagirusamy R, Joshi M, Gupta B (2008) Polyesters and polyamides. CRC, Boca Raton

    Book  Google Scholar 

  4. Matthies P, Seydl WF (1986) History and development of nylon 6. In High Performance Polymers: Their Origin and Development 1986:39–53

    Google Scholar 

  5. Quiles-Carrillo L, Montanes N, Boronat T, Balart R, Torres-Giner SJPT (2017) Evaluation of the engineering performance of different biobased aliphatic homopolyamide tubes prepared by profile extrusion. Polym Test 61:421–429

    Article  CAS  Google Scholar 

  6. Dhanalakshmi M, Jog JP (2008) Preparation and characterization of electrospun fibers of Nylon 11. Exp Polym Lett 2:540–545

    Article  CAS  Google Scholar 

  7. Meier MA, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36:1788–1802

    Article  CAS  PubMed  Google Scholar 

  8. Ruehle DA, Perbix C, Castañeda M, Dorgan JR, Mittal V, Halley P, Martin D (2013) Blends of biorenewable polyamide-11 and polyamide-6, 10. Polymer 54:6961–6970

    Article  CAS  Google Scholar 

  9. Youssef AM (2013) Polymer nanocomposites as a new trend for packaging applications. Polym Plast Tech Eng 52:635–660

    Article  CAS  Google Scholar 

  10. Kausar A, Rafique I, Muhammad B (2017) Aerospace application of polymer nanocomposite with carbon nanotube, graphite, graphene oxide, and nanoclay. Polym Plast Techn Eng 56:1438–1456

    Article  CAS  Google Scholar 

  11. Sudareva NN, Penkova AV, Kostereva TA, Polotskii AE, Polotskaya GA (2012) Properties of casting solutions and ultrafiltration membranes based on fullerene-polyamide nanocomposites. Express Polym Lett 6:178–188

    Article  CAS  Google Scholar 

  12. Van Zyl WE, García M, Schrauwen BA, Kooi BJ, De Hosson JTM, Verweij H (2002) Hybrid polyamide/silica nanocomposites: synthesis and mechanical testing. Macro Mater Eng 287:106–110

    Article  Google Scholar 

  13. Agrawal A, Sharma A, Awasthi KK, Awasthi A (2021) Metal oxides nanocomposite membrane for biofouling mitigation in wastewater treatment. Mater Today Chem 21:1–15

    Google Scholar 

  14. Ambrósio JD, Balarim CVM, de Carvalho GB (2016) Preparation, characterization, and mechanical/tribological properties of polyamide 11/Titanium dioxide nanocomposites. Polym Compos 37:1415–1424

    Article  Google Scholar 

  15. Maity P, Basu S, Parameswaran V, Gupta N (2008) Degradation of polymer dielectrics with nanometric metal-oxide fillers due to surface discharges. IEEE Trans Dielectric Electr Insul 15:52–62

    Article  CAS  Google Scholar 

  16. Hong N, Song L, Hull TR, Stec AA, Wang B, Pan Y, Hu Y (2013) Facile preparation of graphene supported Co3O4 and NiO for reducing fire hazards of polyamide 6 composites. Mater Chem Phys 142:531–538

    Article  CAS  Google Scholar 

  17. Hajibeygi M, Shabanian M, Omidi-Ghallemohamadi M, Khonakdar HA (2017) Optical, thermal and combustion properties of self-colored polyamide nanocomposites reinforced with azo dye surface modified ZnO nanoparticles. Appl Surf Sci 416:628–638

    Article  CAS  Google Scholar 

  18. Xu Q, Zhang N, He D, Liu Z, Li W, He W (2019) Preparation of polyamide 6/copper nanocomposites and its properties. Rev Roum Chim 64:479–484

    Article  Google Scholar 

  19. Ma Y, Ye Y, Wan H, Chen L, Zhou H, Chen J (2019) In-situ synthesis strategy of monodispersed Ag2S nanoparticles to modify wear resistance of polyamide-imide nanocomposite lubricating coatings. Tribol Lett 67:1–11

    Article  Google Scholar 

  20. Patel HA, Bocchini S, Frache A, Camino G (2010) Platinum nanoparticle intercalated montmorillonite to enhance the char formation of polyamide 6 nanocomposites. J Mater Chem 20:9550–9558

    Article  CAS  Google Scholar 

  21. Zor S, Ilmieva N (2018) Corrosion behavior of PANI/Epoxy/nano SnO2 polymeric nanocomposite coated stainless steel in 3.5 wt% NaCl. Polym Compos 39:2415–2425

    Article  Google Scholar 

  22. Gadhi TA, Qureshi A, Channa N, Mahar RB, Chiadò A, Novara C, Tagliaferro A (2021) Bi2O3/nylon multilayered nanocomposite membrane for the photocatalytic inactivation of waterborne pathogens and degradation of mixed organic pollutants. Environ Sci Nano 8:342–355

    Article  CAS  Google Scholar 

  23. Xu Q, Chen F, Li X, Zhang Z (2013) The effect of surface functional groups of nanosilica on the properties of polyamide 6/SiO2 nanocomposite. Polym J Chem Tech 15:20–24

    Article  CAS  Google Scholar 

  24. Shanmugan S, Gorjian S, Elsheikh AH, Essa FA, Omara ZM, Raghu AV (2021) Investigation into the effects of SiO2/TiO2 nanolayer on the thermal performance of solar box type cooker. Energy Sources A Recovery Util Environ Eff 43:2724–2737

    Article  CAS  Google Scholar 

  25. Rakhshan N, Pakizeh M (2015) The effect of chemical modification of SiO2 nanoparticles on the nanofiltration characteristics of polyamide membrane. Korean J Chem Eng 32:2524–2533

    Article  CAS  Google Scholar 

  26. Murray HH (2006) Applied Clay Mineralogy: occurrences, processing and applications of kaolins, bentonites, palygorskite-sepiolite, and common clays. Elsevier, Boston

    Google Scholar 

  27. Agarwal H, Yadav S, Jaiswar G (2017) Effect of nanoclay and barium sulfate nanoparticles on the thermal and morphological properties of polyvinylidene fluoride nanocomposites. J Therm Anal Calorim 129:1471–1479

    Article  CAS  Google Scholar 

  28. Dai L (2006) From conventional technology to carbon nanotechnology: The fourth industrial revolution and the discoveries of C60, carbon nanotube and nanodiamond. Carbon Nanotechnol 2006:3–11

    Article  Google Scholar 

  29. Jain VP, Chaudhary S, Sharma D, Dabas N, Lalji RSK, Singh BK, Jaiswar G (2021) Advanced functionalized nanographene oxide as a biomedical agent for drug delivery and anti-cancerous therapy: a review. Eur Polym J 142:110124

    Article  CAS  Google Scholar 

  30. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Article  CAS  PubMed  Google Scholar 

  31. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  32. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511

    Article  CAS  PubMed  Google Scholar 

  33. Tong X, Liu C, Cheng HM, Zhao H, Yang F, Zhang X (2004) Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler-Natta polymerization. J Appl Polym Sci 92:3697–3700

    Article  CAS  Google Scholar 

  34. Sandler JKW, Pegel S, Cadek M, Gojny F, Van Es M, Lohmar J, Shaffer MSP (2004) A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer 45:2001–2015

    Article  CAS  Google Scholar 

  35. Wan X, Huang Y, Chen Y (2012) Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Acc Chem Res 45:598–607

    Article  CAS  PubMed  Google Scholar 

  36. Fu X, Yao C, Yang G (2015) Recent advances in graphene/polyamide 6 composites: a review. RSC Adv 5:61688–61702

    Article  CAS  Google Scholar 

  37. Fu XA, Qutubuddin S (2001) Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42:807–813

    Article  CAS  Google Scholar 

  38. Arboleda-Clemente L, Ares-Pernas A, García X, Dopico S, Abad MJ (2016) Influence of polyamide ratio on the CNT dispersion in polyamide 66/6 blends by dilution of PA66 or PA6-MWCNT masterbatches. Synth Met 221:134–141

    Article  CAS  Google Scholar 

  39. Güryel S, Alonso M, Hajgató B, Dauphin Y, Van Lier G, Geerlings P, De Proft F (2017) A computational study on the role of noncovalent interactions in the stability of polymer/graphene nanocomposites. J Mol Model 23:1–14

    Article  Google Scholar 

  40. Prasai D, Tuberquia JC, Harl RR, Jennings GK, Bolotin KI (2012) Graphene: corrosion-inhibiting coating. ACS Nano 6:1102–1108

    Article  CAS  PubMed  Google Scholar 

  41. Chen X, Yi Z, Lei J, Yi H, Yao W, Zhu W, Duan T (2016) Preparation and performance of an aging-resistant nanocomposite film of binary natural polymer-graphene oxide. ACS Omega 1:1173–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pagacz J, Raftopoulos KN, Leszczyńska A, Pielichowski K (2016) Bio-polyamides based on renewable raw materials. J Therm Anal Calorim 123:1225–1237

    Article  CAS  Google Scholar 

  43. Mark J (1999) Polymer Data Handbook. Oxford University, Oxford

    Google Scholar 

  44. Stavila E, Arsyi RZ, Petrovic DM, Loos K (2013) Fusarium solanipisicutinase-catalyzed synthesis of polyamides. Eur Polym J 49:834–842

    Article  CAS  Google Scholar 

  45. Duda A, Kowalski A, Penczek S, Uyama H, Kobayashi S (2002) Kinetics of the ring-opening polymerization of 6-, 7-, 9-, 12-, 13-, 16-, and 17-membered lactones: comparison of chemical and enzymatic polymerizations. Macromolecules 35:4266–4270

    Article  CAS  Google Scholar 

  46. Biangardi HJ (1990) Brill transition of polyamide 6.12. J Macromol Sci B 29:139–153

    Article  Google Scholar 

  47. Platt DK (2003) Engineering and high-performance plastics market report: A Rapra market report. Smithers Rapra Pub, UK

    Google Scholar 

  48. Ragupathy L, Ziener U, Dyllick-Brenzinger R, von Vacano B, Landfester K (2012) Enzyme-catalyzed polymerizations at higher temperatures: synthetic methods to produce polyamides and new poly (amide-co-ester) s. J Mol Catal B Enzym 76:94–105

    Article  CAS  Google Scholar 

  49. Rydz J, Sikorska W, Kyulavska M, Christova D (2014) Polyester-based (bio) degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16:564–596

    Article  PubMed  PubMed Central  Google Scholar 

  50. Valapa RB, Loganathan S, Pugazhenthi G, Thomas S, Varghese TO (2017) An overview of polymer-clay nanocomposites. ClayPolym Nanocompos 1:29–81

    Google Scholar 

  51. Vo VS, Mahouche-Chergui S, Babinot J, Nguyen VH, Naili S, Carbonnier B (2016) Photo-induced SI-ATRP for the synthesis of photoclickable intercalated clay nanofillers. RSC Adv 6:89322–89327

    Article  CAS  Google Scholar 

  52. Zhou Y, Pervin F, Rangari VK, Jeelani S (2007) Influence of montmorillonite clay on the thermal and mechanical properties of conventional carbon fiber reinforced composites. J Mater Process Technol 191:347–351

    Article  CAS  Google Scholar 

  53. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  54. Herrero M, Asensio M, Nunez K, Merino JC, Pastor JM (2019) Morphological, thermal, and mechanical behavior of polyamide11/sepiolite bio-nanocomposites prepared by melt compounding and in situ polymerization. Polym Compos 40:704–713

    Article  Google Scholar 

  55. Stojšić J, Raos P, Milinović A, Damjanović D (2022) A Study of the flexural properties of PA12/clay nanocomposites. Polymer 14:434

    Article  Google Scholar 

  56. Asensio M, Herrero M, Núñez K, Merino JC, Pastor JM (2020) The influence of sepiolite orientation and concentration, on the morphological, thermal and mechanical properties of bio-polyamide 4.10 nanocomposites. Polym Eng Sci 60:1035–1043

    Article  CAS  Google Scholar 

  57. Mekhzoum MEM, Raji M, Rodrigue D, Bouhfid R (2020) The effect of benzothiazolium surfactant modified montmorillonite content on the properties of polyamide 6 nanocomposites. Appl Clay Sci 185:1–14

    Article  Google Scholar 

  58. Li TC, Ma J, Wang M, Tjiu WC, Liu T, Huang W (2007) Effect of clay addition on the morphology and thermal behavior of polyamide 6. J Appl Polym Sci 103:1191–1199

    Article  CAS  Google Scholar 

  59. Xie S, Zhang S, Wang F, Yang M, Séguéla R, Lefebvre JM (2007) Preparation, structure and thermomechanical properties of nylon-6 nanocomposites with lamella-type and fiber-type sepiolite. ComposSci Technol 67:2334–2341

    Article  CAS  Google Scholar 

  60. Bilotti E, Zhang R, Deng H, Quero F, Fischer HR, Peijs T (2009) Sepiolite needle-like clay for PA6 nanocomposites: an alternative to layered silicates. Compos Sci Technol 69:2587–2595

    Article  CAS  Google Scholar 

  61. García-López D, Fernández JF, Merino JC, Santarén J, Pastor JM (2010) Effect of organic modification of sepiolite for PA6 polymer/organoclay nanocomposites. Compos Sci Technol 70:1429–1436

    Article  Google Scholar 

  62. García-López D, Fernández JF, Merino JC, Pastor JM (2013) Influence of organic modifier characteristic on the mechanical properties of polyamide 6/organosepiolite nanocomposites. Compos B 45:459–465

    Article  Google Scholar 

  63. Bilotti E, Duquesne E, Deng H, Zhang R, Quero F, Georgiades SN, Peijs T (2014) In situ polymerised polyamide 6/sepiolite nanocomposites: Effect of different interphases. Eur Polym J 56:131–139

    Article  CAS  Google Scholar 

  64. Vyas A, Iroh JO (2014) Thermal behavior and structure of clay/nylon-6 nanocomposite synthesized by in situ solution polymerization. J Therm Anal Calorim 117:39–52

    Article  CAS  Google Scholar 

  65. Risite H, Mabrouk KE, Bousmina M, Fassi-Fehri O (2016) Role of polyamide 11 interaction with clay and modifier on thermal, rheological and mechanical properties in polymer clay nanocomposites. J Nanosci Nanotechnol 16:7584–7593

    Article  CAS  Google Scholar 

  66. Hindeleh AM, Johnson DJ (1978) Crystallinity and crystallite size measurement in polyamide and polyester fibres. Polymer 19:27–32

    Article  CAS  Google Scholar 

  67. Yebra-Rodriguez A, Fernandez-Barranco C, La Rubia MD, Yebra A, Rodriguez-Navarro AB, Jimenez-Millan J (2014) Thermooxidative degradation of injection-moulded sepiolite/polyamide 66 nanocomposites. Mineral Mag 78:1227–1239

    Article  Google Scholar 

  68. Qin H, Su Q, Zhang S, Zhao B, Yang M (2003) Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites. Polymer 44:7533–7538

    Article  CAS  Google Scholar 

  69. Chae DW, Lim JH, Seo JS, Kim BC (2012) Variation of physical properties of nylon-66/clay nanocomposites with preparation conditions. Korea Aust Rheol J 24:45–52

    Article  Google Scholar 

  70. Stoclet G, Sclavons M, Devaux J (2013) Relations between structure and property of polyamide 11 nanocomposites based on raw clays elaborated by water-assisted extrusion. J Appl Polym Sci 127:4809–4824

    Article  CAS  Google Scholar 

  71. Fernandez-Barranco C, Yebra-Rodriguez A, La Rubia-Garcia MD, Navas-Martos FJ, Alvarez-Lloret P (2015) Mechanical and crystallographic properties of injection-molded polyamide 66/sepiolite nanocomposites with different clay loading. Polym Compos 36:2326–2333

    Article  CAS  Google Scholar 

  72. Fernandez-Barranco C, Kozioł AE, Skrzypiec K, Rawski M, Drewniak M, Yebra-Rodriguez A (2016) Reprint of study of spatial distribution of sepiolite in sepiolite/polyamide 6, 6 nanocomposites. Appl Clay Sci 130:50–54

    Article  CAS  Google Scholar 

  73. Borić A, Kalendová A, Urbanek M, Pepelnjak T (2019) Characterisation of polyamide (PA) 12 nanocomposites with montmorillonite (MMT) filler clay used for the incremental forming of sheets. Polymers 11:1–20

    Article  Google Scholar 

  74. Benobeidallah B, Benhamida A, Dorigato A, Sola A, Messori M, Pegoretti A (2019) Structure and properties of polyamide 11 nanocomposites filled with fibrous palygorskite clay. J Renew Mater 7:89–102

    Article  Google Scholar 

  75. Benobeidallah B, Benhamida A, Kaci M, Lopez-Cuesta JM (2020) Combined effect of palygorskite and melamine polyphosphate on flame retardancy properties of polyamide 11 nanocomposites. Appl Clay Sci 198:1–9

    Article  Google Scholar 

  76. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25:630–645

    Article  CAS  Google Scholar 

  77. Calvert P (1999) A recipe for strength. Nature 399:210–211

    Article  CAS  Google Scholar 

  78. Mahmood N, Islam M, Hameed A, Saeed S, Khan AN (2014) Polyamide-6-based composites reinforced with pristine or functionalized multi-walled carbon nanotubes produced using melt extrusion technique. J Compos Mater 48:1197–1207

    Article  CAS  Google Scholar 

  79. Jiang J, Zhang D, Zhang Y, Zhang K, Wu G (2013) Influences of carbon nanotube networking on the conductive, crystallization, and thermal expansion behaviors of pa610-based nanocomposites. J Macromol Sci B 52:910–923

    Article  CAS  Google Scholar 

  80. Chiu FC, Kao GF (2012) Polyamide 46/multi-walled carbon nanotube nanocomposites with enhanced thermal, electrical, and mechanical properties. Compos A 43:208–218

    Article  Google Scholar 

  81. Madhukar K, Sainath AVS, Bikshamaiah N, Srinivas Y, Babu NM, Ashok B, Rao BS (2014) Thermal properties of single walled carbon nanotubes composites of polyamide 6/poly (methyl methacrylate) blend system. J Therm Anal Calorim 115:345–354

    Article  CAS  Google Scholar 

  82. Otaegi I, Aranburu N, Iturrondobeitia M, Ibarretxe J, Guerrica-Echevarría G (2019) The effect of the preparation method and the dispersion and aspect ratio of CNTs on the mechanical and electrical properties of biobased polyamide-4, 10/CNT nanocomposites. Polymers 11:1–16

    Article  Google Scholar 

  83. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45:739–748

    Article  CAS  Google Scholar 

  84. Kodgire PV, Bhattacharyya AR, Bose S, Gupta N, Kulkarni AR, Misra A (2006) Control of multiwall carbon nanotubes dispersion in polyamide 6 matrix: An assessment through electrical conductivity. Chem Phys Lett 432:480–485

    Article  CAS  Google Scholar 

  85. Otaegi I, Aramburu N, Müller AJ, Guerrica-Echevarría G (2018) Novel biobased polyamide 410/polyamide 6/CNT nanocomposites. Polymers 10:1–18

    Article  Google Scholar 

  86. Vidakis N, Petousis M, Tzounis L, Velidakis E, Mountakis N, Grammatikos SA (2021) Polyamide 12/multiwalled carbon nanotube and carbon black nanocomposites manufactured by 3D printing fused filame. nt fabrication: a comparison of the electrical, thermoelectric, and mechanical properties. C 7(2):38

    CAS  Google Scholar 

  87. Qi S, Gao X, Su Y, Zhou Y, Dong X, Wang D (2022) Effect of carbon nanotubes on mechanical properties of polyamide 12 parts by fused filament fabrication. Polymer 247:124784

    Article  CAS  Google Scholar 

  88. Deng H, Bilotti E, Zhang R, Wang K, Zhang Q, Peijs T, Fu Q (2011) Improving tensile strength and toughness of melt processed polyamide 6/multiwalled carbon nanotube composites by in situ polymerization and filler surface functionalization. J Appl Polym Sci 120:133–140

    Article  CAS  Google Scholar 

  89. Zhang WD, Shen L, Phang IY, Liu T (2004) Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules 37:256–259

    Article  CAS  Google Scholar 

  90. Liu T, Phang IY, Shen L, Chow SY, Zhang WD (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222

    Article  CAS  Google Scholar 

  91. Bhattacharyya AR, Pötschke P (2006) Mechanical properties and morphology of melt-mixed PA6/SWNT composites: effect of reactive coupling. Macromol Symp 233:161–169

    Article  CAS  Google Scholar 

  92. Jose MV, Steinert BW, Thomas V, Dean DR, Abdalla MA, Price G, Janowski GM (2007) Morphology and mechanical properties of nylon 6/MWNT nanofibers. Polymer 48:1096–1104

    Article  CAS  Google Scholar 

  93. Yang M, Gao Y, Li H, Adronov A (2007) Functionalization of multiwalled carbon nanotubes with polyamide 6 by anionic ring-opening polymerization. Carbon 45:2327–2333

    Article  CAS  Google Scholar 

  94. Meng H, Sui GX, Fang PF, Yang R (2008) Effects of acid-and diamine-modified MWNTs on the mechanical properties and crystallization behavior of polyamide 6. Polymer 49:610–620

    Article  CAS  Google Scholar 

  95. Kang S, Kim J, Park JH, Jung I, Park M (2020) Multiwalled carbon nanotube pretreatment to enhance tensile properties, process stability, and filler dispersion of polyamide 66 nanocomposites. Compos B 198:1–11

    Article  Google Scholar 

  96. Chatterjee S, Nüesch FA, Chu BT (2011) Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites. Nanotech 22:275714

    Article  CAS  Google Scholar 

  97. Socher R, Krause B, Müller MT, Boldt R, Pötschke P (2012) The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites. Polymer 53:495–504

    Article  CAS  Google Scholar 

  98. Sethy S, Barwal V, Satapathy BK (2022) Tunable thermo-sensitive electrical conductivity of melt-mixed PA-12/PP-MWCNT nanocomposites. Compos Sci Technol 217:109099

    Article  CAS  Google Scholar 

  99. Ehteramian M, Ghasemi I, Azizi H, Karrabi M (2021) Functionalization of multi-walled carbon nanotube and its effect on shape memory behavior of nanocomposite based on thermoplastic polyurethane/polyvinyl chloride/multi-walled carbon nanotube (TPU/PVC/MWCNT). Iran Polym J 30:411–422

    Article  CAS  Google Scholar 

  100. Kim HS, Park BH, Yoon JS, Jin HJ (2007) Nylon 610/functionalized multiwalled carbon nanotubes composites by in situ interfacial polymerization. Mater Lett 61:2251–2254

    Article  CAS  Google Scholar 

  101. Logakis E, Pandis C, Peoglos V, Pissis P, Pionteck J, Pötschke P, Omastová M (2009) Electrical/dielectric properties and conduction mechanism in melt processed polyamide/multi-walled carbon nanotubes composites. Polymer 50:5103–5111

    Article  CAS  Google Scholar 

  102. Gorrasi G, Bredeau S, Di Candia C, Patimo G, De Pasquale S, Dubois P (2011) Electroconductive polyamide 6/MWNT nanocomposites: effect of nanotube surface-coating by in situ catalyzed polymerization. Macromol Mater Eng 296:408–413

    Article  CAS  Google Scholar 

  103. Huang Y, Tan L, Zheng S, Liu Z, Feng J, Yang MB (2015) Enhanced dielectric properties of polyamide 11/multi-walled carbon nanotubes composites. J Appl Polym Sci 132:1–9

    Article  Google Scholar 

  104. Kazemi Y, Kakroodi AR, Mark LH, Filleter T, Park CB (2019) Effects of polymer-filler interactions on controlling the conductive network formation in polyamide 6/multi-walled carbon nanotube composites. Polymer 178:121684

    Article  Google Scholar 

  105. Sethy S, Satapathy BK (2020) Microstructural interpretations on thermo-mechanical relaxation and electrical conductivity of polyamide-12/polypropylene-MWCNT nanocomposites. J Polym Res 27:1–12

    Article  Google Scholar 

  106. Xu Z, Gao C (2010) In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43:6716–6723

    Article  CAS  Google Scholar 

  107. Dixon D, Lemonine P, Hamilton J, Lubarsky G, Archer E (2015) Graphene oxide-polyamide 6 nanocomposites produced via in situ polymerization. J Thermoplast Compos Mater 28:372–389

    Article  CAS  Google Scholar 

  108. Gautam J, Pal MK, Singh B, Bhatnagar U (2011) Thermal and electrical properties of acrylic acid grafted onto starch by ceric ammonium nitrate and potassium permanganate initiator. Int J Plast Technol 15:188–198

    Article  CAS  Google Scholar 

  109. Duan X, Yu B, Yang T, Wu Y, Yu H, Huang T (2018) In situ polymerization of nylon 66/reduced graphene oxide nanocomposites. J Nanomater 2018:1–9

    Article  Google Scholar 

  110. Rafiq R, Cai D, Jin J, Song M (2010) Increasing the toughness of nylon 12 by the incorporation of functionalized graphene. Carbon 48:4309–4314

    Article  CAS  Google Scholar 

  111. Attar S, Chen B, Cicala G, Catalanotti G, Scalici T, Falzon BG (2022) On the mechanical properties of melt-blended nylon 6/ethylene-octene copolymer/graphene nanoplatelet nanocomposites. Polymer 243:124619

    Article  CAS  Google Scholar 

  112. Nakhaei MR, Naderi G, Ghoreishy MHR (2021) Fracture mechanisms and failure analysis of PA6/NBR/graphene nanocomposites by essential work of fracture. Iran Polym J 30:975–987

    Article  CAS  Google Scholar 

  113. Wu J, Gan H, Liu H (2021) Coagulation-assisted preparation of graphene oxide/polyamide 6 composites. Mater Chem Phys 266:1–10

    Article  Google Scholar 

  114. Chiu FC, Huang IN (2012) Phase morphology and enhanced thermal/mechanical properties of polyamide 46/graphene oxide nanocomposites. Polym Test 31:953–962

    Article  CAS  Google Scholar 

  115. Cai Z, Meng X, Han Y, Ye H, Cui L, Zhou Q (2015) Reinforcing polyamide 1212 with graphene oxide via a two-step melt compounding process. Compos A 69:115–123

    Article  CAS  Google Scholar 

  116. Kausar A (2018) Composite coatings of polyamide/graphene: microstructure, mechanical, thermal, and barrier properties. Compos Interface 25:109–125

    Article  CAS  Google Scholar 

  117. Lee J, Yun YS, Kim B, Cho SY, Jin HJ (2014) Nylon 610/graphene oxide composites prepared by in-situ interfacial polymerization. J Nanosci Nanotechnol 14:5703–5707

    Article  CAS  PubMed  Google Scholar 

  118. Zhang PP, Zhu KY, Su LQ, Xiao R (2013) Preparation and properties of graphene/polyamide 6 composites by melt compounding. In Adv Mater Res 621:31–34

    Article  Google Scholar 

  119. Zhu D, Ren Y, Liao G, Jiang S, Liu F, Guo J, Xu G (2017) Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling. J Appl Polym Sci 134:1–13

    Article  Google Scholar 

  120. Liu M, Li M, Hou H, Li R (2015) Thermal properties of PA6 nanocomposites by addition of graphene non-covalently functionalized with dendronized polyamide. J Therm Anal Calorim 120:1303–1310

    Article  CAS  Google Scholar 

  121. Zhuang YF, Cao XY, Zhang JN, Ma YY, Shang XX, Lu JX, Ma YM (2019) Monomer casting nylon/graphene nanocomposite with both improved thermal conductivity and mechanical performance. Compos A 120:49–55

    Article  CAS  Google Scholar 

  122. Xu BF, Lin ZD, Du CM, Lin HB, Liang KY, Qiu WP, Yang GL (2015) Mechanical properties, morphology and thermal conductivity of polyamide composites filled with graphene nanoplatelets, Al2O3 and graphite. Mater Res Innov 19:1–388

    Article  Google Scholar 

  123. Ren Y, Zhang Y, Guo H, Lv R, Bai SL (2019) A double mixing process to greatly enhance thermal conductivity of graphene filled polyamide 6 composites. Compos A 126:1–8

    Article  Google Scholar 

  124. Gaikwad S, Tate JS, Theodoropoulou N, Koo JH (2013) Electrical and mechanical properties of PA11 blended with nanographene platelets using industrial twin-screw extruder for selective laser sintering. J Compos Mater 47:2973–2986

    Article  CAS  Google Scholar 

  125. Yoo Y, Lee HL, Ha SM, Jeon BK, Won JC, Lee SG (2014) Effect of graphite and carbon fiber contents on the morphology and properties of thermally conductive composites based on polyamide 6. Polym Int 63:151–157

    Article  CAS  Google Scholar 

  126. Ding P, Su S, Song N, Tang S, Liu Y, Shi L (2014) Highly thermal conductive composites with polyamide-6 covalently-grafted graphene by an in-situ polymerization and thermal reduction process. Carbon 66:576–584

    Article  CAS  Google Scholar 

  127. Hofmann D, Keinath M, Thomann R, Mülhaupt R (2014) Thermoplastic carbon/polyamide 12 composites containing functionalized graphene, expanded graphite, and carbon nanofillers. Macromol Mater Eng 299:1329–1342

    Article  CAS  Google Scholar 

  128. Mayoral B, Harkin-Jones E, Khanam PN, AlMaadeed MA, Ouederni M, Hamilton AR, Sun D (2015) Melt processing and characterisation of polyamide 6/graphene nanoplatelet composites. Rsc Adv 5:52395–52409

    Article  CAS  Google Scholar 

  129. Hwang SH, Kim BJ, Baek JB, Shin HS, Bae IJ, Lee SY, Park YB (2016) Effects of process parameters and surface treatments of graphene nanoplatelets on the crystallinity and thermomechanical properties of polyamide 6 composite fibers. Compos B 100:220–227

    Article  CAS  Google Scholar 

  130. Chen B, Davies R, Liu Y, Yi N, Qiang D, Zhu Y, Ghita O (2020) Laser sintering of graphene nanoplatelets encapsulated polyamide powders. Addit Manuf 35:1–9

    Google Scholar 

  131. Cho BG, Joshi SR, Han JH, Kim GH, Park YB (2021) Interphase strengthening of carbon fiber/polyamide 6 composites through mixture of sizing agent and reduced graphene oxide coating. Compos A 149:1–16

    Article  Google Scholar 

  132. Radzik P, Leszczyńska A, Pielichowski K (2020) Modern biopolyamide-based materials: synthesis and modification. Polym Bull 77:501–528

    Article  CAS  Google Scholar 

  133. Fan J, Njuguna J (2016) An introduction to lightweight composite materials and their use in transport structures. Lightweight Compos Struct Transport 2016:3–34

    Article  Google Scholar 

  134. Kausar A (2019) Trends in graphene reinforced polyamide nanocomposite for functional application: a review. Polym Plast Tech Mater 58:917–933

    CAS  Google Scholar 

  135. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782

    Article  CAS  Google Scholar 

  136. Swain SK, Priyadarshini PP, Patra SK (2012) Soy protein/clay bionanocomposites as ideal packaging materials. Polym Plast Tech Eng 51:1282–1287

    Article  CAS  Google Scholar 

  137. Smolander M, Chaudhry Q (2010) Nanotechnologies in food packaging. Nanotech Food 14:86–101

    Article  CAS  Google Scholar 

  138. Temizel-Sekeryan S, Wu F, Hicks AL (2021) Global scale life cycle environmental impacts of single-and multi-walled carbon nanotube synthesis processes. Int J LCA 26:656–672

    Article  CAS  Google Scholar 

  139. Shahbazi M, Rajabzadeh G, Sotoodeh S (2017) Functional characteristics, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes. Int J Biol Macromol 104:597–605

    Article  CAS  PubMed  Google Scholar 

  140. Kausar A, Anwar Z, Khan LA, Muhammad B (2017) Functional graphene nanoplatelet reinforced epoxy resin and polystyrene-based block copolymer nanocomposite. Fuller Nanotub Carbon Nanostruct 25:47–57

    Article  CAS  Google Scholar 

  141. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794

    Article  CAS  Google Scholar 

  142. Han J, Qiu W, Cao Z, Hu J, Gao W (2013) Adsorption of ethinylestradiol (EE2) on polyamide 612: molecular modeling and effects of water chemistry. Water Res 47:2273–2284

    Article  CAS  PubMed  Google Scholar 

  143. Kumar S, Satapathy BK, Maiti SN (2013) Correlation of morphological parameters and mechanical performance of polyamide-612/poly (ethylene-octene) elastomer blends. Polym Adv Technol 24:511–519

    Article  CAS  Google Scholar 

  144. Pal MK, Gautam J (2013) Effects of inorganic nanofillers on the thermal degradation and UV-absorbance properties of polyvinyl acetate. J Therm Anal Calorim 111:689–701

    Article  CAS  Google Scholar 

  145. Rathore S, Madhav H, Jaiswar G (2019) Efficient nano-filler for the phase transformation in polyvinylidene fluoride nanocomposites by using nanoparticles of stannous sulfate. Mater Res Innov 23:183–190

    Article  CAS  Google Scholar 

  146. Wu H, Krifa M, Koo JH (2014) Flame retardant polyamide 6/nanoclay/intumescent nanocomposite fibers through electrospinning. Textile Research J 84:1106–1118

    Article  Google Scholar 

  147. Bachs-Herrera A, Yousefzade O, del Valle LJ, Puiggali J (2021) Melt electrospinning of polymers: blends, nanocomposites, additives and applications. Appl Sci 11:1–39

    Article  Google Scholar 

  148. Yin X, Krifa M, Koo JH (2015) Flame-retardant polyamide 6/carbon nanotube nanofibers: processing and characterization. J Eng Fiber Fabric 10:1–11

    Google Scholar 

  149. Majka TM, Witek M, Radzik P, Komisarz K, Mitoraj A, Pielichowski K (2020) Layer-by-layer deposition of copper and phosphorus compounds to develop flame-retardant polyamide 6/montmorillonite hybrid composites. Appl Sci 10:1–20

    Article  Google Scholar 

  150. Shabanian M, Hajibeygi M, Roohani M (2015) Synthesis of a novel CNT/polyamide composite containing phosphine oxide groups and its flame retardancy and thermal properties. New Carbon Mater 30:397–403

    Article  CAS  Google Scholar 

  151. Xing W, Yang W, Yang W, Hu Q, Si J, Lu H, Yuen RK (2016) Functionalized carbon nanotubes with phosphorus-and nitrogen-containing agents: effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites. ACS Appl Mater Interface 8:26266–26274

    Article  CAS  Google Scholar 

  152. Shi Y, Long Z, Yu B, Zhou K, Gui Z, Yuen RK, Hu Y (2015) Tunable thermal, flame retardant and toxic effluent suppression properties of polystyrene based on alternating graphitic carbon nitride and multi-walled carbon nanotubes. J Mater Chem A 3:17064–17073

    Article  CAS  Google Scholar 

  153. Zhou K, Gao R (2017) The influence of a novel two-dimensional graphene-like nanomaterial on thermal stability and flammability of polystyrene. J Colloid Interface Sci 500:164–171

    Article  CAS  PubMed  Google Scholar 

  154. Xiao L, Xu L, Yang Y, Zhang S, Huang Y, Bielawski CW, Geng J (2017) Core-shell structured polyamide 66 nanofibers with enhanced flame retardancy. ACS Omega 2:2665–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kundu CK, Li Z, Li X, Zhang Z, Hu Y (2020) Graphene oxide functionalized biomolecules for improved flame retardancy of polyamide 66 fabrics with intact physical properties. Int J Bio Macromol 156:362–371

    Article  CAS  Google Scholar 

  156. Malkappa K, Bandyopadhyay J, Ojijo V, Ray SS (2022) Superior flame retardancy, antidripping, and thermomechanical properties of polyamide nanocomposites with graphene-based hybrid flame retardant. J Appl Polym Sci 139:52867

    Article  Google Scholar 

  157. Selmy AI, Abd El-baky MA, Hegazy DA (2019) Mechanical properties of inter-ply hybrid composites reinforced with glass and polyamide fibers. J Thermo Compos Mater 32:267–293

    Article  CAS  Google Scholar 

  158. Selmy AI, Abd El-baky MA, Hegazy DA (2020) Wear behavior of glass-polyamide reinforced epoxy hybrid composites. J Thermo Compos Mater 33:214–235

    Article  CAS  Google Scholar 

  159. Chamkouri H, Pooresmaeil M, Namazi H (2021) Carbon fiber/epoxy resin/α-aluminum oxide nanocomposites: fabrication, mechanical and thermal analysis. Iran Polym J 30:523–533

    Article  CAS  Google Scholar 

  160. Devaux E, Bourbigot S, Achari AE (2002) Crystallization behavior of PA-6 clay nanocomposite hybrid. J Appl Polym Sci 86:2416–2423

    Article  CAS  Google Scholar 

  161. Bourbigot S, Devaux E, Flambard X (2002) Flammability of polyamide-6/clay hybrid nanocomposite textiles. Polym Degrad Stabil 75:397–402

    Article  CAS  Google Scholar 

  162. Mészáros L, Deák T, Balogh G, Czvikovszky T, Czigány T (2013) Preparation and mechanical properties of injection moulded polyamide 6 matrix hybrid nanocomposite. Compos Sci Technol 75:22–27

    Article  Google Scholar 

  163. Toghchi MJ, Campagne C, Cayla A, Bruniaux P, Loghin C, Cristian I, Chen Y (2019) Electrical conductivity enhancement of hybrid PA6, 6 composite containing multiwall carbon nanotube and carbon black for shielding effectiveness application in textiles. Synth Met 251:75–84

    Article  Google Scholar 

  164. Saini P (2013) Electrical properties and electromagnetic interference shielding response of electrically conducting thermosetting nanocomposites. Thermoset Nanocompos 12:211–237

    Article  Google Scholar 

  165. Zhang Y, Lu Y, Yan X, Gao W, Chen H, Chen Q, Bai Y (2019) Functional and enhanced graphene/polyamide 6 composite fiber constructed by a facile and universal method. Compos A 123:149–157

    Article  CAS  Google Scholar 

  166. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119–1198

    Article  CAS  Google Scholar 

  167. Megahed M, Abd El-baky MA, Alsaeedy AM, Alshorbagy AE (2019) An experimental investigation on the effect of incorporation of different nanofillers on the mechanical characterization of fiber metal laminate. Compos B 176:1–12

    Article  Google Scholar 

  168. Megahed M, El-baky A, Alsaeedy AM, Alshorbagy AE (2021) Synthesis effect of nano-fillers on the damage resistance of GLARE. Fiber Polym 22:1366–1377

    Article  CAS  Google Scholar 

  169. Megahed M, El-baky A, Alsaeedy AM, Alshorbagy AE (2020) Improvement of impact and water barrier properties of GLARE by incorporation of different types of nanoparticles. Fiber Polym 21:840–848

    Article  CAS  Google Scholar 

  170. Jagannatham M, Chandran P, Sankaran S, Haridoss P, Nayan N, Bakshi SR (2020) Tensile properties of carbon nanotubes reinforced aluminum matrix composites: A review. Carbon 160:14–44

    Article  CAS  Google Scholar 

  171. Kiziltas A, Liu W, Tamrakar S, Mielewski D (2021) Graphene nanoplatelet reinforcement for thermal and mechanical properties enhancement of biobased polyamide 6,10 nanocomposites for automotive applications. Composites Part C 6:1–9

    Google Scholar 

  172. Alamgir M, Nayak GC, Mallick A, Sahoo S (2021) Effects of TiO2 and GO nanoparticles on the thermomechanical properties of bioactive poly-HEMA nanocomposites. Iran Polym J 30:1089–1099

    Article  CAS  Google Scholar 

  173. Zhang X, Yang G, Lin J (2006) Synthesis, rheology, and morphology of nylon-11/layered silicate nanocomposite. J Polym Sci Part B 44:2161–2172

    Article  CAS  Google Scholar 

  174. Lao SC, Koo JH, Moon TJ, Londa M, Ibeh CC, Wissler GE, Pilato LA (2011) Flame-retardant polyamide 11 nanocomposites: further thermal and flammability studies. J Fire Sci 29:479–498

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author Deepa Sharma wishes to acknowledge the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, India for providing financial support during the study as Senior Research Fellowship (SRF), (Award No. 09/197(0007)/2019-EMR-I) and also Head Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra for providing space for research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Jaiswar.

Ethics declarations

Conflict of interest

The author declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper and also declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Kumar, M., Jain, V.P. et al. Bio-based polyamide nanocomposites of nanoclay, carbon nanotubes and graphene: a review. Iran Polym J 32, 773–790 (2023). https://doi.org/10.1007/s13726-023-01164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01164-x

Keywords

Navigation