Skip to main content
Log in

A computational study on the role of noncovalent interactions in the stability of polymer/graphene nanocomposites

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Understanding the interaction between graphene and polymers is of essential interest when designing novel nanocomposites with reinforced mechanical and electrical properties. In this computational study, the interaction of pristine graphene (PG) and graphene oxide (GO) with a series of functional groups, representative of the functionalised buildings blocks occurring in different polymers, and attached to aliphatic and aromatic chains, is analyzed using dispersion-corrected semi-empirical methods (PM6-D3H4X) and density functional theory calculations with empirical dispersion corrections. Functional groups include alkyl, hydroxyl, aldehyde, carboxyl, amino and nitro groups, and the binding energies of these groups with graphene derivatives (PG and GO) are determined. Nitro- and carbonyl groups display stronger interactions in both aliphatic and aromatic chains. The importance of dispersion-type and non-covalent interactions (NCI) in general, which typically, double the interaction energies, is revealed. The results are interpreted in an extensive NCI analysis in order to characterize the different types of NCI, providing a better understanding of the nature of the interaction (π–π stacking, CH–π bonding, H-bonding and lone pair–π interaction) at stake. In order to highlight the influence of polymer structure/conformation on top of that of their functional groups, the binding of three polymers, polyethylene (PE), polystyrene (PS) and polyvinylidene fluoride (PVDF), on pristine graphene is also investigated. Our calculations indicate that, although all polymers exhibit evident attractive interactions with the graphene sheet, the overall interaction is strongly influenced by the specific polymer structure. Thus, three main conformations of PVDF (the so-called α, β and γ, ε conformations) are analyzed and we find that, although the α-conformer with a trans-gauche-trans-gauche (TGTG’) conformation is the lowest energy conformer, the β-conformation of PVDF with the hydrogen atoms facing the graphene (“F-up”) has the strongest interaction with the graphene surface among the polymers under consideration. Taken together, our computational approach sheds light on the character and importance of non-covalent graphene-polymer functional group interactions combined with the structural/conformational properties of the polymer, which are at stake in the design of novel nanocomposites with reinforced mechanical and electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1
Scheme 2
Fig. 11

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  2. Balandin AA, Ghosh S, Bao W, Calizo L, Teweldebrhan D, Miao F, Lau CN (2008) NanoLetter 8:902–907

    Article  CAS  Google Scholar 

  3. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385–388

    Article  CAS  Google Scholar 

  4. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282–286

    Article  CAS  Google Scholar 

  5. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  6. Park S, Ruoff RS (2009) Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  7. Qin W, Li X, Bian WW, Fan XJ, Qi J-Y (2010) Biomaterials 31:1007–1016

    Article  CAS  Google Scholar 

  8. Guo Y-N, Lu X, Wenig J, Leng Y (2013) J Phys Chem C 117:5708–5717

    Article  CAS  Google Scholar 

  9. Ganji MD (2009) Diam Relat Mater 18:662–668

    Article  CAS  Google Scholar 

  10. Rajarajeswari M, Iyakutti K, Kawazoe Y (2011) J Mol Model 17:2773–2778

    Article  CAS  Google Scholar 

  11. Leenaerts O, Partoens B, Peeters FM (2008) Phys Rev 77:125416

    Article  Google Scholar 

  12. Minoia A, Chen L, Beljonne D, Lazzaroni R (2012) Polymer 53:5480–5490

    Article  CAS  Google Scholar 

  13. Kawai H (1969) Jpn J Appl Phys 8:975

    Article  CAS  Google Scholar 

  14. Nalwa H (1995) Ferroelectric polymers, vol 353. Dekker, New York

    Google Scholar 

  15. Hasegawa R, Takahashi Y, Chatani Y, Tadokoro H (1972) Polym J 3:600

    Article  CAS  Google Scholar 

  16. Lovinger AJ (1981) Polymer 22:412–413

    Article  CAS  Google Scholar 

  17. Ramasundaram S, Yoon S, Kim KJ, Park C (2008) J Polym Sci B Polym Phys 46:2173–2187

    Article  CAS  Google Scholar 

  18. Matsushige K, Nagata K, Imada S, Takemura T (1980) Polymer 21:1391–1397

    Article  CAS  Google Scholar 

  19. Yang D, Chen Y (1987) J Mater Sci Lett 6:599–603

    Article  CAS  Google Scholar 

  20. Lund A, Gustafsson C, Bertilsson H, Rychwalski RW (2011) Compos Sci Technol 71:222

    Article  CAS  Google Scholar 

  21. Pertsev NA, Zembilgotov AG (1994) Macromolecular 27:6936–6941

    Article  CAS  Google Scholar 

  22. Shen B, Zhai W, Chen C, Lu D, Wang J, Zheng W (2011) ACS Appl Mater Interfaces 3:3103–3109

    Article  CAS  Google Scholar 

  23. Vondrasek J, Kubai T, Jenney FE, Adams MWW, Kosizek M, Cerny J, Sklenar V, Hobza P (2007) Chem Eur J 13:9022–9027

    Article  CAS  Google Scholar 

  24. Hobza P, Rezac J (2016) Chem Rev 116:4911–4912

    Article  CAS  Google Scholar 

  25. Jain A, Ramanathan V, Sankararamakrishnan R (2009) Protein Sci 18:595–605

    CAS  Google Scholar 

  26. Stewart JP (2007) J Mol Model 13:1173

    Article  CAS  Google Scholar 

  27. Johnson ER, Keinan S, Mori-Sanchez P, Chaudret R, Contraras-Garcia J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498

    Article  CAS  Google Scholar 

  28. Contreras-García J, Boto RA, Izquierdo-Ruiz F, Reva I, Woller T, Alonso M (2016) Theor Chem Accounts 135:242

  29. Nart C, Maroun Z, Bota RA, Chaudret R, Bonet ML, Piquemal JP, Contreras Garcia J (2016) In: Chauvin R, Lepetit C, Silvi B, Alikhani E (eds) Applications of topological methods in molecular chemistry. Springer, Heidelberg

    Google Scholar 

  30. Alonso M, Woller T, Martín-Martínez FJ, Contreras-García J, Geerlings P, De Proft F (2014) Chem Eur J 20:4931–4941

    Article  CAS  Google Scholar 

  31. Hajgato B, Güryel S, Blairon J, Dauphin Y, Miltner H, Van Lier G, De Proft F, Geerlings P (2012) J Phys Chem C 116:22608–22618

    Article  CAS  Google Scholar 

  32. Güryel S, Hajgato B, Dauphin Y, Blairon JM, Miltner H, De Proft F, Geeerlings P, Van Lier G (2013) Phys Chem Chem Phys 15:659–665

    Article  Google Scholar 

  33. Hajgato B, Güryel S, Dauphin Y, Blairon JM, Miltner H, Van Lier G, De Proft F, Geerlings P (2013) Chem Phys Lett 546:37–40

    Article  Google Scholar 

  34. Hajgato B, Güryel S, Dauphin Y, Blairon JM, Van Lier G, Miltner HE, De Proft F, Geerlings P (2014) Indian J Chem Spec Issue Chem React Theory 53A:1058–1063

    CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci GA, Petersson B, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski SW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 (revision B.01). Gaussian, Inc, Wallingford

    Google Scholar 

  36. Rezac J, Fanfrlik J, Salahub D, Hobza P (2009) J Chem Theory Comput 5:1749–1760

    Article  CAS  Google Scholar 

  37. Rezac J, Riley KE, Hobza P (2012) J Chem Theory Comput 8:4285–4292

    Article  CAS  Google Scholar 

  38. Korth M, Pitonak M, Rezac J, Hobza P (2010) J Chem Theory Comput 6:344–352

    Article  CAS  Google Scholar 

  39. Hostas J, Rezac J, Hobza P (2013) Chem Phys Lett 568:161–166

    Article  Google Scholar 

  40. Rezac J, Hobza P (2011) Chem Phys Lett 506:286–289

    Article  CAS  Google Scholar 

  41. Stewart JJ (2012) P. MOPAC2012, Stewart computational chemistry. Colorado Springs, http://OpenMOPAC.net. Accessed 2012

  42. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  43. Vázquez-Mayagoitia Á, Sherrill CD, Aprà E, Sumpter BG (2010) J Chem Theory Comput 6:727–734

    Article  Google Scholar 

  44. Peverati R, Baldridge KK (2008) J Chem Theory Comput 4:2030–2048

    Article  CAS  Google Scholar 

  45. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  46. Van Duyneveldt FB, Van de Rijdt JGCM, Van Lenthe JH (1994) Chem Rev 94:1873–1885

    Article  Google Scholar 

  47. Lipinski J, Chojnacki H (1981) Int J Quantum Chem XIX:891–900

    Article  Google Scholar 

  48. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, Yang W (2011) J Chem Theory Comput 7:625–632

    Article  Google Scholar 

  49. Elkington PA, Curthoys G (1969) J Phys Chem 73:2321–2326

    Article  CAS  Google Scholar 

  50. Zacharia R, Ulbricht H, Hertel T (2004) Phys Rev B 69:155406

    Article  Google Scholar 

  51. Grimme S (2008) Angew Chem Int Ed 47:3430–3434

    Article  CAS  Google Scholar 

  52. Ran J, Hobza P (2009) J Chem Theory Comput 5:1180–1185

    Article  CAS  Google Scholar 

  53. Kuila T, Bose S, Khanra P, Mishra AK, Kim NH, Lee JH (2012) Carbon 50:914–921

    Article  CAS  Google Scholar 

  54. Breneman CM, Wiberg KB (1990) J Comput Chem 11:361–373

    Article  CAS  Google Scholar 

  55. Hehre WJ, Radom L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  56. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Nat Nanotechnol 3:327–331

    Article  CAS  Google Scholar 

  57. Kim DY, Singh NJ, Kim KS (2008) J Chem Theory Comput 4:1401–1407

    Article  CAS  Google Scholar 

  58. Alonso M, Pinter B, Woller T, Geerlings P, De Proft F (2015) Comput Theor Chem 1053:150–164

    Article  CAS  Google Scholar 

  59. Pinter B, Nagels N, Herrebout WA, De Proft F (2013) Chem Eur J 19:519–530

    Article  CAS  Google Scholar 

  60. Huang X, Qi X, Boey F, Zhang H (2012) Chem Soc Rev 41:666–686

    Article  CAS  Google Scholar 

  61. Vagione HJ, Gómez MA, Martínez G (2009) Macromolecular 42:6331–6334

    Article  Google Scholar 

  62. Campbell K, Gurun B, Sumpter BG, Thio YS, Bucknall DG (2011) J Phys Chem B 115:8989–8995

    Article  CAS  Google Scholar 

  63. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  64. Yu S, Zheng W, Yu W, Zhang Y, Jiang Q, Zhao Z (2009) Macromolecular 42:8870–8874

    Article  CAS  Google Scholar 

  65. Bohlen M, Bolton K (2014) Phys Chem Chem Phys 16:12929–12939

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of SOLVAY, S.A. In addition, the authors acknowledge support from the COST Materials, Physical and Nanosciences (MPNS) Action MP0901: “Designing Novel Materials for Nanodevices—From Theory to Practice (NanoTP)”. M. A. thanks the Fund for Scientific Research , Flanders (FWO-12F4416N), for a postdoctoral fellowship, and the Free University of Brussels (VUB) for financial support.

The authors, and in particular P.G. and F.D.P., want to dedicate this contribution to their colleague Henri Chermette to whom this special issue is dedicated. Henri has been a very fine colleague, almost a friend, for so many years, a true companion in the search for what Density Functional Theory can really contribute to chemistry. That the recently developed and completetely density based NCI method may help chemists in the design of nanocomposites may be an illustration where the Density has led us, and will lead us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Geerlings.

Additional information

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette

Appendix

Appendix

Fig. 12
figure 12

NCI analysis of H-nitro with GO and PG. The gradient isosurfaces (s = 0.5 a.u.) are colored on a BGR scale according to the sign (λ2)ρ over the range −0.02 to 0.02 a.u.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güryel, S., Alonso, M., Hajgató, B. et al. A computational study on the role of noncovalent interactions in the stability of polymer/graphene nanocomposites. J Mol Model 23, 43 (2017). https://doi.org/10.1007/s00894-017-3214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3214-2

Keywords

Navigation