Skip to main content
Log in

Preparation, characterization and controlled release study of poly(urea–formaldehyde) microcapsules enclosing Pretilachlor herbicide

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Herein, we report Pretilachlor herbicide loaded poly(urea–formaldehyde) microcapsules prepared through in situ polymerization reaction between urea and formaldehyde. The preparation method of microcapsules was mainly consisted two steps, namely, oil in water emulsification and polymeric wall formation. Pretilachlor was selected as a core material to reduce its leaching problem into groundwater, because it eventually affects aquatic and terrestrial life. The conventional formulations of this herbicide were unable to minimize its adverse effects on the non-target organisms. With the aim to avoid the restricted use of an effective herbicide, Pretilachlor; efforts were undertaken to solve the existing problems using microencapsulation technique. The prepared microcapsules were characterized using various analytical techniques to confirm their morphology, chemical structure, particle size distribution, thermal properties and release performance of core material. The controlled release behavior of microcapsules was studied by gravimetric analysis and UV–Vis spectroscopy was used to establish the release kinetics of core material. The mean particle size of the prepared microcapsules was found to be 185 µm. The release study of microcapsules showed 71% of release in solvent and approximately 60%, 38% and 5% release in acidic, basic and neutral conditions, respectively. Therefore, Pretilachlor herbicide was successfully encapsulated in poly(urea–formaldehyde) resin, and an environment friendly microencapsulated suspension formulation was proposed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Green BK, Lowell S (1957) Oil-containing microscopic capsules and method of making them, US Patent 2,800,457

  2. Khode PD, Katre TB (2019) Review of micrencapsulation: a review a novel approach in drug delivery. Res J Pharma Dosage Forms Technol 11:191–198

    Article  Google Scholar 

  3. Li Z, Chen S, Zhou S (2004) Factors affecting the particle size and size distribution of polyurea microcapsules by interfacial polymerization of polyisocyanates. Int J Polym Mater Polym Biomater 53:21–31

    Article  CAS  Google Scholar 

  4. Peanparkdee M, Iwamoto S, Yamauchi R (2016) Microencapsulation: a review of applications in the food and pharmaceutical industries. Rev Agric Sci 4:56–65

    Article  Google Scholar 

  5. Mamidi N, Delgadillo RMV (2021) Design, fabrication and drug release potential of dual stimuli-responsive composite hydrogel nanoparticle interfaces. Colloid Surf B Biointerfaces 204:111819

    Article  CAS  PubMed  Google Scholar 

  6. Topbas O, Sariisik AM, Erkan G, Ek O (2020) Photochromic microcapsules by coacervation and in situ polymerization methods for product-marking applications. Iran Polym J 29:117–132

    Article  CAS  Google Scholar 

  7. Zandi M, Hashemi SA, Aminayi P, Hosseinali F (2011) Microencapsulation of disperse dye particles with nano film coating through layer by layer technique. J Appl Polym Sci 119:586–594

    Article  CAS  Google Scholar 

  8. Abdelrahman M, Wahab S, Mashaly H, Ali S, Maamoun D, Khattab TA (2020) Review in textile printing technology. Egypt J Chem 63:3465–3479

    Google Scholar 

  9. Chen L, Li Y, Wang T, Yu Y (2021) Sorption, desorption and mobility of microencapsulated chlorpyrifos in two typical soils. Arch Environ Contam Toxicol 81:265–271

    Article  CAS  PubMed  Google Scholar 

  10. Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 27:187–197

    Article  CAS  PubMed  Google Scholar 

  11. Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Li L (2016) Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf 15:143–182

    Article  CAS  PubMed  Google Scholar 

  12. Abbas S, Da Wei C, Hayat K, Zhang X (2012) Ascorbic acid: microencapsulation techniques and trends—a review. Food Rev Int 28:343–374

    Article  CAS  Google Scholar 

  13. Tsuji K (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18:137–147

    Article  CAS  PubMed  Google Scholar 

  14. Yang D, Li G, Yan X, Yuan H (2014) Controlled release study on microencapsulated mixture of fipronil and chlorpyrifos for the management of white grubs (Holotrichia parallela) in peanuts (Arachis hypogaea L.). J Agric Food Chem 62:10632–10637

    Article  CAS  PubMed  Google Scholar 

  15. Shefali KR, Sankhla MS, Kumar R, Sonone SS (2021) Impact of pesticide toxicity in aquatic environment. Biointerface Res Appl Chem 11:10131–10140

    CAS  Google Scholar 

  16. Sopeña F, Maqueda C, Morillo E (2009) Controlled release formulations of herbicides based on micro-encapsulation. Cien Inv Agr 36:27–42

    Article  Google Scholar 

  17. Alonso ML, Laza JM, Alonso RM, Jiménez RM, Vilas JL, Fañanás R (2014) Pesticides microencapsulation. A safe and sustainable industrial process. J Chem Technol Biotechnol 89:1077–1085

    Article  CAS  Google Scholar 

  18. Akelah A (1996) Novel utilizations of conventional agrochemicals by controlled release formulations. Mater Sci Eng C 4:83–98

    Article  Google Scholar 

  19. Roy A, Singh SK, Bajpai J, Bajpai AK (2014) Controlled pesticide release from biodegradable polymers. Cent Eur J Chem 12:453–469

    CAS  Google Scholar 

  20. Wang Y, Bai W, Cui Z (2015) Fourier transform infrared spectroscopic study of pesticide microcapsules influenced by formaldehyde to urea ratio. Spectrosc Lett 48:259–264

    Article  CAS  Google Scholar 

  21. Faruk MSA, Salam MA, Jannat M, Rabbani MG (2013) Effect of herbicide Prechlor on the performance of T. aman rice. J Bangladesh Agril Univ 11:257–264

    Article  Google Scholar 

  22. Sofo A, Scopa A, Dumontet S, Mazzatura A, Pasquale V (2012) Toxic effects of four sulphonylureas herbicides on soil microbial biomass. J Environ Sci Health B 47:653–659

    Article  CAS  PubMed  Google Scholar 

  23. Sahoo S, Adak T, Bagchi TB, Kumar U, Munda S, Saha S, Berliner J, Jena M, Mishra BB (2017) Effect of pretilachlor on soil enzyme activities in tropical rice soil. Bull Environ Contam Toxicol 98:439–445

    Article  CAS  PubMed  Google Scholar 

  24. Riah W, Laval K, Laroche-Ajzenberg E, Mougin C, Latour X, Trinsoutrot-Gattin I (2014) Effects of pesticides on soil enzymes: a review. Environ Chem Lett 12:257–273

    Article  CAS  Google Scholar 

  25. Boutin C, Strandberg B, Carpenter D, Mathiassen SK, Thomas PJ (2014) Herbicide impact on non-target plant reproduction: What are the toxicological and ecological implications? Environ Pollut 185:295–306

    Article  CAS  PubMed  Google Scholar 

  26. Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK (2021) Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatal Agric Biotechnol 33:102009

    Article  CAS  Google Scholar 

  27. Lang S, Zhou Q (2017) Synthesis and characterization of poly(urea–formaldehyde) microcapsules containing linseed oil for self-healing coating development. Prog Org Coat 105:99–110

    Article  CAS  Google Scholar 

  28. Brown EN, Kessler MR, Sottos NR, White SR (2003) In situ poly(urea–formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20:719–730

    Article  CAS  PubMed  Google Scholar 

  29. Patil DK, Agrawal DS, Mahire RR, More DH (2015) Synthesis, characterization, and controlled release study of polyurea microcapsules containing metribuzin herbicide. Russ J Appl Chem 88:1692–1700

    Article  CAS  Google Scholar 

  30. Li M, Xu W, Hu D, Song B (2018) Preparation and application of pyraclostrobin microcapsule formulations. Colloids Surf A Physicochem Eng Asp 553:578–585

    Article  CAS  Google Scholar 

  31. Yan X, Wang Y, Liu H, Li R, Qian C (2018) Synthesis and characterization of melamine–formaldehyde microcapsules containing pyraclostrobin by in situ polymerization. Polym Sci Ser B 60:798–805

    Article  CAS  Google Scholar 

  32. Wang Y, Qian C, Yan X, Liu H (2017) Preparation and characterization of controlled-release poly(melamine–formaldehyde) microcapsules filled with 2,4-d isooctyl ester. Int J Polym Mater Polym Biomater 66:963–969

    Article  CAS  Google Scholar 

  33. Qian C, Li R, Wang Y, Yan X (2017) Preparation and characterization of 2,4-d butyl ester capsule suspension for mitigation of its drift risk. J Macromol Sci A 54:118–123

    Article  CAS  Google Scholar 

  34. Marathe RJ, Gite VV (2016) Encapsulation of 8-HQ as a corrosion inhibitor in PF and UF shells for enhanced anticorrosive properties of renewable source based smart PU coatings. RSC Adv 6:114436–114446

    Article  CAS  Google Scholar 

  35. Shisode PS, Patil CB, Mahulikar PP (2018) Preparation and characterization of microcapsules containing soybean oil and their application in self-healing anticorrosive coatings. Polym Plast Technol Eng 57:1334–1343

    Article  CAS  Google Scholar 

  36. Tatiya PD, Hedaoo RK, Mahulikar PP, Gite VV (2013) Novel polyurea microcapsules using dendritic functional monomer: synthesis, characterization, and its use in self-healing and anticorrosive polyurethane coatings. Ind Eng Chem Res 52:1562–1570

    Article  CAS  Google Scholar 

  37. Karandikar PS, Rajput JD, Bagul SD, Gite VV, Bendre RS (2019) Controlled release study of phenol formaldehyde based microcapsules containing various loading percentage of core cypermethrin at different agitation rates. Polym Bull 76:2519–2536

    Article  CAS  Google Scholar 

  38. Hedaoo RK, Tatiya PD, Mahulikar PP, Gite VV (2014) Fabrication of dendritic 0 G PAMAM-based novel polyurea microcapsules for encapsulation of herbicide and release rate from polymer shell in different environment. Des Monomers Polym 17:111–125

    Article  CAS  Google Scholar 

  39. Hu Z-X, Hu X-M, Cheng W-M, Lu W (2019) Influence of synthetic conditions on the performance of melamine–phenol–formaldehyde resin microcapsules. High Perform Polym 31:197–210

    Article  CAS  Google Scholar 

  40. Wang L, Advani SG, Prasad AK (2016) Self-healing composite membrane for proton electrolyte membrane fuel cell applications. J Electrochem Soc 163:F1267–F1271

    Article  CAS  Google Scholar 

  41. Yuan L, Gu A, Liang G (2008) Preparation and properties of poly(urea–formaldehyde) microcapsules filled with epoxy resins. Mater Chem Phys 110:417–425

    Article  CAS  Google Scholar 

  42. Nesterova T, Dam-Johansen K, Kiil S (2011) Synthesis of durable microcapsules for self-healing anticorrosive coatings: a comparison of selected methods. Prog Org Coat 70:342–352

    Article  CAS  Google Scholar 

  43. Jadhav RS, Hundiwale DG, Mahulikar PP (2011) Synthesis and characterization of phenol–formaldehyde microcapsules containing linseed oil and its use in epoxy for self-healing and anticorrosive coating. J Appl Polym Sci 119:2911–2916

    Article  CAS  Google Scholar 

  44. Liu H, Wang Y, Li D, Yan X, Li R (2019) Preparation and characterization of poly(melamine–formaldehyde) microcapsules filled with propisochlor. J Macromol Sci A 56:676–685

    Article  CAS  Google Scholar 

  45. Diyanat M, Saeidian H, Baziar S, Mirjafary Z (2019) Preparation and characterization of polycaprolactone nanocapsules containing pretilachlor as a herbicide nanocarrier. Environ Sci Pollut Res 26:21579–21588

    Article  CAS  Google Scholar 

  46. Marathe RJ, Chaudhari AB, Hedaoo RK, Sohn D, Chaudhari VR, Gite VV (2015) Urea formaldehyde (UF) microcapsules loaded with corrosion inhibitor for enhancing the anti-corrosive properties of acrylic-based multi-functional PU coatings. RSC Adv 5:15539–15546

    Article  CAS  Google Scholar 

  47. Mamidi N, Delgadillo RMV, Castrejón JV (2021) Unconventional and facile production of stimuli-responsive multifunctional system for simultaneous drug delivery and environmental remediation. Environ Sci Nano 8:2081–2097

    Article  CAS  Google Scholar 

  48. Zhao D, Wang M-Z, Wu Q-C, Zhou X, Ge X-W (2014) Microencapsulation of UV-curable self-healing agent for smart anticorrosive coating. Chin J Chem Phys 27:607–615

    Article  CAS  Google Scholar 

  49. Baskaran M, Azmi NACH, Hashim R, Sulaiman O (2017) Properties of binderless particleboard and particleboard with addition of urea formaldehyde made from oil palm trunk waste. J Phys Sci 28:151–159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chhatrapati Shahu Maharaj Research Training and Human Development Institute (SARTHI), Pune Maharashtra, India for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratnamala Bendre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, R., Bendre, R. Preparation, characterization and controlled release study of poly(urea–formaldehyde) microcapsules enclosing Pretilachlor herbicide. Iran Polym J 31, 691–704 (2022). https://doi.org/10.1007/s13726-022-01036-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01036-w

Keywords

Navigation