Skip to main content

Advertisement

Log in

Functionalized chitosan with super paramagnetic hybrid nanocarrier for targeted drug delivery of curcumin

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Recently, hydrophobically functionalized polymers have been deployed as carriers to improve the encapsulation of hydrophobic drugs. The metal nanocomposites are extensively used to improve the biocompatibility of the formulation and target the drug to the specialized site. In our current study, naphthalene acetate (NAA) was incorporated into the amine group of chitosan to form a hydrophobically functionalized chitosan–NAA drug delivery carrier. The calcium ferrite nanoparticles (CFNP) were embedded in the chitosan–NAA matrix to form a super paramagnetic hybrid nanocarrier for controlled curcumin drug delivery. Various analytical techniques were performed to ensure the functional group modifications, thermal stability, surface nature and morphological behavior of synthesized hybrid carriers. The maximum encapsulation efficiency of 93.6% was obtained under the optimized conditions of drug to chitosan–NAA at 0.1, CFNP to chitosan–NAA at 0.75 and TPP to chitosan–NAA at 1.0 (w/w) ratios, respectively, by adapting Taguchi method. Drug release studies were conducted to determine the effect of pH, drug loading concentrations and magnetic field responses. The drug release data were fitted to various kinetic release models to understand the drug release mechanism. The biocompatibility of the hybrid material was tested using L929 mouse fibroblast cells. The cytotoxicity test against breast cancer cells (MCF-7) was also performed to study the anticancer property of the hybrid paramagnetic material. The prepared curcumin-loaded chitosan–NAA/CFNP was very active against cancer cells in comparison to the normal cells. The results confirmed the applicability of the hybrid nanocarriers in cancer cell-targeted drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Krausz AE, Adler BL, Cabral V, Navati M, Doerner J, Charafeddine R, Chandra D, Liang H, Gunther L, Clendaniel A, Harper S, Friedman JM, Nosanchuk JD, Friedman AJ (2015) Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 1:195–206

    Article  CAS  Google Scholar 

  2. Franco C (2018) Presenting a new standard drug model for turmeric and its prized extract, curcumin. Int J Inflamm 2018:5023429

    Google Scholar 

  3. Daugherty DJ, Marquez A, Calcutt NA, Schubert D (2018) A novel curcumin derivative for the treatment of diabetic neuropathy. Neuropharmacology 129:26–35

    Article  CAS  PubMed  Google Scholar 

  4. Lerdchai K, Kitsongsermthon J, Ratanavaraporn J, Kanokpanont S, Damrongsakkul S (2016) Thai silk fibroin/gelatin sponges for the dual controlled release of curcumin and docosahexaenoic acid for anticancer treatment. J Pharm Sci 105:221–230

    Article  CAS  PubMed  Google Scholar 

  5. Mahdavinia GR, Hosseini R, Darvishi F, Sabzi M (‎2016) The release of cefazolin from chitosan/polyvinyl alcohol/sepiolite nanocomposite hydrogel films. Iran Polym J 25:933–994

    Article  CAS  Google Scholar 

  6. Klippstein R, Wang JT, El-Gogary RI, Bai J, Mustafa F, Rubio N, Bansal S, Al-Jamal WT, Al-Jama KT (2015) Passively targeted curcumin-loaded PEGylated PLGA nanocapsules for colon cancer therapy in vivo. Small 11:4704–4722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dhivya R, Ranjani J, Rajendhran J, Mayandi J, Annaraj J (2018) Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles. Mater Sci Eng C 82:182–189

    Article  CAS  Google Scholar 

  8. Zhao X, Chen Q, Liu W, Li Y, Tang H, Liu X, Yang X (2015) Codelivery of doxorubicin and curcumin with lipid nanoparticles results in improved efficacy of chemotherapy in liver cancer. Int J Nanomed 10:257–270

    Google Scholar 

  9. Bano S, Afzal M, Waraich MM, Alamgir K, Nazir S (2016) Paclitaxel loaded magnetic nanocomposites with folate modified chitosan/carboxymethyl surface; a vehicle for imaging and targeted drug delivery. Int J Pharm 513:554–563

    Article  CAS  PubMed  Google Scholar 

  10. Sohrabijam Z, Zamanian A, Saidifar M, Nouri A (2015) Preparation and characterization of superparamagnetic chitosan coated maghemite (γ-Fe2O3) for gene delivery. Proc Mater Sci 11:282–286

    Article  CAS  Google Scholar 

  11. Sriram K, Uma Maheswari P, Ezhilarasu A, Meera Sheriffa Begum KM, Arthanareeswaran G (2017) CuO-loaded hydrophobically modified chitosan as hybrid carrier for curcumin delivery and anticancer activity. Asia-Pac J Chem Eng 12:858–871

    Article  CAS  Google Scholar 

  12. Chen D, Pamu S, Cui Q, Chan TH, Dou QP (2012) Novel epigallocatechingallate (EGCG) analogs activate AMP-activated protein kinase pathway and target cancer stem cells. Bioorg Med Chem 20:3031–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Donnelly AC, Mays JR, Burlison JA, Nelson JT, Vielhauer G, Holzbeierlein J, Blagg BSJ (2008) The design, synthesis and evaluation of coumarin ring derivatives of the novobiocin scaffold that exhibit anti-proliferative activity. J Org Chem 73:8901–8920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Markiewicz KH, Zembko P, Półtorak K, Misztalewska I, Wojtulewski S, Majcher AM, Fornalc E, Wilczewska AZ (2016) Magnetic nanoparticles with chelating shells prepared by RAFT/MADIX polymerization. New J Chem 11:9223–9231

    Article  CAS  Google Scholar 

  15. Mancarella S, Greco V, Baldassarre F, Vergara D, Maffia M, Leporatti S (2015) Polymer-coated magnetic nanoparticles for curcumin delivery to cancer cells. Macromol Biosci 10:1365–1374

    Article  CAS  Google Scholar 

  16. Ong HR, Khan MMR, Yousuf A, Hussain NA, Cheng CK (2015) Synthesis and characterization of a CaFe2O4 catalyst for oleic acid esterification. RSC Adv 5:100362–100368

    Article  CAS  Google Scholar 

  17. El-Rafei AM, El-Kalliny AS, Gad-Allah TA (2017) Electrospun magnetically separable calcium ferrite nanofibers for photocatalytic water purification. J Magn Magn Mater 428:92–98

    Article  CAS  Google Scholar 

  18. Zhang Z, Wang W (2014) Solution combustion synthesis of CaFe2O4 nanocrystal as a magnetically separable photocatalyst. Mater Lett 133:212–215

    Article  CAS  Google Scholar 

  19. Kamaraj S, Palanisamy UM, Mohamed MSBK., Gangasalam A, Maria GA, Kandasamy R (2018) Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier. Eur J Pharm Sci 116:48–60

    Article  CAS  PubMed  Google Scholar 

  20. Scheeren LE, Nogueira DR, Macedo LB, Vinardell MP, Mitjans M, Infante MR, Rolim CM (2016) PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicin release. Colloids Surf B 138:117–127

    Article  CAS  Google Scholar 

  21. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48:589–601

    CAS  PubMed  Google Scholar 

  22. Sajomsang W, Tantayanon S, Tangpasuthadol V, Thatte M, Daly WH (2008) Synthesis and characterization of N-aryl chitosan derivatives. Int J Biol Macromol 43:79–87

    Article  CAS  PubMed  Google Scholar 

  23. Yang C, Zhou Y, Zheng Y, Li C, Sheng S, Wang J, Wu F (2016) Enzymatic modification of chitosan by cinnamic acids: antibacterial activity against Ralstonia solanacearum. Int J Biol Macromol 87:577–585

    Article  CAS  PubMed  Google Scholar 

  24. Zou Q, Li J, Li Y (2015) Preparation and characterization of vanilin-crosslinked chitosan therapeutic bioactive microcarriers. Int J Biol Macromol 79:736–747

    Article  CAS  PubMed  Google Scholar 

  25. Pirouz MJ, Beyki MH, Shemirani F (2015) Anhydride functionalised calcium ferrite nanoparticles: a new selective magnetic material for enrichment of lead ions from water and food samples. Food Chem 170:131–137

    Article  CAS  PubMed  Google Scholar 

  26. Krishnamohan PR, Sreelakshmi G, Muraleedharan CV, Joseph R (2012) Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib Spectrosc 62:77–84

    Article  CAS  Google Scholar 

  27. Demetgül C, Beyazit N (2018) Synthesis, characterization and antioxidant activity of chitosan-chromone derivatives. Carbohydr Polym 181:812–817

    Article  CAS  PubMed  Google Scholar 

  28. Bilas R, Sriram K, Uma Maheswari P, Meera Sheriffa Begum KM (2017) Highly biocompatible chitosan with super paramagnetic calciumferrite (CaFe2O4) nanoparticle for the release of ampicillin. Int J Biol Macromol 97:513–525

    Article  CAS  PubMed  Google Scholar 

  29. kumar PS, Selvakumar M, Babu SG, Jaganathan SK, Karuthapandian S, Chattopadhyay S (2015) Novel naal/chitosan nanocomposite thin film: facile hand picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Adv 5:57493–57501

    Article  CAS  Google Scholar 

  30. Chen CH, Wang FY, Mao CF, Liao WT, Hsieh CD (2008) Studies of chitosan: II. Preparation and characterization of chitosan/poly (vinyl alcohol) gelatin ternary blend films. Int J Biol Macromol 43:37–42

    Article  CAS  PubMed  Google Scholar 

  31. Follmann HD, Martins AF, Gerola AP, Burgo TAL, Nakamura CV, Rubira AF, Muniz EC (2012) Anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of TMC/heparin complexes. Biomacromolecule 13:3711–3722

    Article  CAS  Google Scholar 

  32. Khanna L, Verma NK (2013) Size-dependent magnetic properties of calcium ferrite nanoparticles. J Magn Magn Mater 336:1–7

    Article  CAS  Google Scholar 

  33. Zheng W, Gao F, Gu H (2005) Magnetic polymer nanospheres with high and uniform magnetite content. J Magn Magn Mater 288:403–410

    Article  CAS  Google Scholar 

  34. Basu T, Pal B, Singh S (2018) Fabrication of core–shell PLGA/PLA–pNIPAM nanocomposites for improved entrapment and release kinetics of antihypertensive drugs. Particuology. https://doi.org/10.1016/j.partic.2017.10.002

    Article  Google Scholar 

  35. Babu VN, Kannan S (2012) Enhanced delivery of baicalein using cinnamaldehyde cross-linked chitosan nanoparticle inducing apoptosis. Int J Biol Macromol 51:1103–1108

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We are grateful to Dr. Mukesh Doble and his research student Govindaraj Perumal for their help in MTT assay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadhar Mohamed Meera Sheriffa Begum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1425 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriram, K., Uma Maheswari, P., Meera Sheriffa Begum, K.M. et al. Functionalized chitosan with super paramagnetic hybrid nanocarrier for targeted drug delivery of curcumin. Iran Polym J 27, 469–482 (2018). https://doi.org/10.1007/s13726-018-0624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-018-0624-7

Keywords

Navigation