Skip to main content

Advertisement

Log in

Granulocyte-colony-stimulating factor-producing metaplastic carcinoma of the breast with significant elevation of serum interleukin-17 and vascular endothelial growth factor levels

  • Case report
  • Published:
International Cancer Conference Journal Aims and scope Submit manuscript

Abstract

Granulocyte-colony-stimulating factor (G-CSF) production in carcinomas is associated with a very aggressive phenotype. Interleukin (IL)-17 secreted from tumor-infiltrating lymphocytes induces the production of G-CSF and vascular endothelial growth factor (VEGF) in cancer tissue. We present a case of a G-CSF-producing metaplastic breast carcinoma (MpBC) accompanied by systemic elevation of IL-17 and VEGF levels. A 56-year-old woman presented with a rapidly growing tumor measuring > 10 cm in her left breast. Core needle biopsy confirmed the diagnosis as MpBC with triple-negative features. Diffuse fluorodeoxyglucose uptake in the long bones and marked leukocytosis suggested that the G-CSF was produced by the primary tumor, which showed upregulated G-CSF mRNA and protein levels. Multiplex cytokine assessment identified increased serum IL-17, VEGF, and G-CSF levels. After radical mastectomy and skin grafting, the leukocyte count and serum G-CSF, IL-17, and VEGF levels were normalized. She underwent postmastectomy radiotherapy (50 Gy/25 Fr) and adjuvant chemotherapy (90 mg/m2 of epirubicin and 600 mg/m2 of cyclophosphamide followed by 80 mg/m2 of paclitaxel) and is alive without recurrence. This is the first in vivo observation that describes the systemic elevation of IL-17 and VEGF levels with concomitant G-CSF production. Further research is warranted to study the IL-17/G-CSF/VEGF axis as a potential therapeutic target for this aggressive type of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marion DW (2016) Diaphragmatic pacing. In: Post TW (ed.) UpToDate. UpToDate, Waltham

    Google Scholar 

  2. Asano S, Urabe A, Okabe T et al (1977) Demonstration of granulopoietic factor(s) in the plasma of nude mice transplanted with a human lung cancer and in the tumor tissue. Blood 49:845–852

    PubMed  CAS  Google Scholar 

  3. Kaira K, Ishizuka T, Tanaka H et al (2008) Lung cancer producing granulocyte colony-stimulating factor and rapid spreading to peritoneal cavity. J Thorac Oncol 3:1054–1055

    Article  PubMed  Google Scholar 

  4. Ito N, Matsuda T, Kakehi Y et al (1990) Bladder cancer producing granulocyte colony-stimulating factor. N Engl J Med 323:1709–1710

    PubMed  CAS  Google Scholar 

  5. Kawaguchi M, Asada Y, Terada T et al (2010) Aggressive recurrence of gastric cancer as a granulocyte-colony-stimulating factor-producing tumor. Int J Clin Oncol 15:191–195

    Article  PubMed  Google Scholar 

  6. Suzuki K, Ota D, Nishi T et al (2015) A case of granulocyte-colony stimulating factor-producing spindle cell carcinoma of the breast. Clin Breast Cancer 15:e213-217

    Article  Google Scholar 

  7. Tsuzuki H, Fujieda S, Sunaga H et al (1998) Expression of granulocyte colony-stimulating factor receptor correlates with prognosis in oral and mesopharyngeal carcinoma. Cancer Res 58:794–800

    PubMed  CAS  Google Scholar 

  8. Filderman AE, Bruckner A, Kacinski BM et al (1992) Macrophage colony-stimulating factor (csf-1) enhances invasiveness in csf-1 receptor-positive carcinoma cell lines. Cancer Res 52:3661–3666

    PubMed  CAS  Google Scholar 

  9. Berdel WE, Danhauser-Riedl S, Steinhauser G et al (1989) Various human hematopoietic growth factors (interleukin-3, gm-csf, g-csf) stimulate clonal growth of nonhematopoietic tumor cells. Blood 73:80–83

    PubMed  CAS  Google Scholar 

  10. Chung AS, Wu X, Zhuang G et al (2013) An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19:1114–1123

    Article  PubMed  CAS  Google Scholar 

  11. Kumar J, Fraser FW, Riley C et al (2014) Granulocyte colony-stimulating factor receptor signalling via janus kinase 2/signal transducer and activator of transcription 3 in ovarian cancer. Br J Cancer 110:133–145

    Article  PubMed  CAS  Google Scholar 

  12. Mabuchi S, Matsumoto Y, Kawano M et al (2014) Uterine cervical cancer displaying tumor-related leukocytosis: a distinct clinical entity with radioresistant feature. J Natl Cancer Inst. https://doi.org/10.1093/jnci/dju147

    Article  PubMed  Google Scholar 

  13. Samuel S, Fan F, Dang LH et al (2011) Intracrine vascular endothelial growth factor signaling in survival and chemoresistance of human colorectal cancer cells. Oncogene 30:1205–1212

    Article  PubMed  CAS  Google Scholar 

  14. Akevall J, Nandalur S, Zhang J et al (2014) A novel panel of biomarkers predicts radioresistance in patients with squamous cell carcinoma of the head and neck. Eur J Cancer 50:570–581

    Article  CAS  Google Scholar 

  15. Stephanie C, Jerome G, Clemence T et al (2013) IL-17A is produced by breast cancer TILs and promotes chemoresistance and proliferation through ERK1/2. Sci Rep 3:3456

    Article  Google Scholar 

  16. Li Q, Xu X, Zhong W et al (2015) IL-17 induces radiation resistance of B lymphoma cells by suppressing p53 expression and thereby inhibiting irradiation-triggered apoptosis. Cell Mol Immunol 12:366–372

    Article  PubMed  CAS  Google Scholar 

  17. Yamamoto N, Skine I, Nakagawa K et al (2009) A pharmacokinetic and dose escalation study of pegfilgrastim (KRN125) in lung cancer patients with chemotherapy-induced neutropenia. Jpn J Clin Oncol 39:425–430

    Article  PubMed  Google Scholar 

  18. Lyman GH, Dale DC, Culakova E et al (2013) The impact of the granulocyte colony-stimulating factor on chemotherapy dose intensity and cancer survival: a systematic review and meta-analysis of randomized controlled trials. Ann Oncol 24:2475–2484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Taichman NS, Young S, Cruchley AT et al (1997) Human neutrophils secrete vascular endothelial growth factor. J Leukoc Biol 62:397–400

    Article  PubMed  CAS  Google Scholar 

  20. Gaudry M, Bregerie O, Andrieu V et al (1997) Intracellular pool of vascular endothelial growth factor in human neutrophils. Blood 90:4153–4161

    PubMed  CAS  Google Scholar 

  21. Webb NJ, Myers CR, Watson CJ et al (1998) Activated human neutrophils express vascular endothelial growth factor (VEGF). Cytokine 10:254–257

    Article  PubMed  CAS  Google Scholar 

  22. Sunderkotter C, Steinbrink K, Goebeler M et al (1994) Macrophages and angiogenesis. J Leukoc Biol 55:410–422

    Article  PubMed  CAS  Google Scholar 

  23. Abouharb S, Moulder S (2015) Metaplastic breast cancer: clinical overview and molecular aberrations for potential targeted therapy. Curr Oncol Rep 17:431

    Article  PubMed  CAS  Google Scholar 

  24. Chen IC, Lin CH, Huang CS et al (2011) Lack of efficacy to systemic chemotherapy for treatment of metaplastic carcinoma of the breast in the modern era. Breast Cancer Res Treat 130:345–351

    Article  PubMed  CAS  Google Scholar 

  25. Moroney J, Fu S, Moulder S et al (2012) Phase I study of the antiangiogenic antibody bevacizumab and the mtor/hypoxia-inducible factor inhibitor temsirolimus combined with liposomal doxorubicin: Tolerance and biological activity. Clin Cancer Res 18:5796–5805

    Article  PubMed  CAS  Google Scholar 

  26. Moulder S, Moroney J, Helgason T et al (2011) Responses to liposomal doxorubicin, bevacizumab, and temsirolimus in metaplastic carcinoma of the breast: Biologic rationale and implications for stem-cell research in breast cancer. J Clin Oncol 29:e572-575

    Article  Google Scholar 

  27. Mombelli S, Cochaud S, Merrouche Y et al (2015) IL-17A and its homologs IL-25/IL-17E recruit the c-RAF/S6 kinase pathway and the generation of pro-oncogenic LMW-E in breast cancer cells. Sci Rep 5:11874

    Article  PubMed  PubMed Central  Google Scholar 

  28. Laprevotte E, Cochaud S, du Manoir S et al (2017) The IL-17B-IL-17 receptor B pathway promotes resistance to paclitaxel in breast tumors through activation of the ERK1/2 pathway. Oncotarget 8:113360–113372

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bie Q, Jin C, Zhang B et al (2017) IL-17B: a new area of study in the IL-17 family. Mol Immunol 90:50–56

    Article  PubMed  CAS  Google Scholar 

  30. Yang L, Qi Y, Hu J et al (2012) Expression of Th17 cells in breast cancer tissue and its association with clinical parameters. Cell Biochem Biophys 62:153–159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the patients and medical staff of the Kyoto University Hospital for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukiko Fukui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants

The tests presented in this report were performed under the approval of the Ethics Committee of Kyoto University Hospital (Protocol number; G424).

Informed consent

Written informed consent for the usage of patient-derived resources was obtained from the patients prior to the research and the publication.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukui, Y., Kawashima, M., Kawaguchi, K. et al. Granulocyte-colony-stimulating factor-producing metaplastic carcinoma of the breast with significant elevation of serum interleukin-17 and vascular endothelial growth factor levels. Int Canc Conf J 7, 107–113 (2018). https://doi.org/10.1007/s13691-018-0330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13691-018-0330-5

Keywords

Navigation