Skip to main content
Log in

New Physiological Aspects of Brown Adipose Tissue

  • Metabolism (R Pasquali, Section Editor)
  • Published:
Current Obesity Reports Aims and scope Submit manuscript

Abstract

Brown adipose tissue is specialised for the generation of heat by non-shivering mechanisms. In rodents, the tissue plays a role in energy balance and the development of obesity, as well as in thermoregulation. Studies using fluorodeoxyglucose positron emission tomography (FDG-PET), together with the identification of uncoupling protein-1, have provided definitive evidence that brown adipose tissue is present in adult humans. Brown fat activity is stimulated by cold exposure, declines with age and is inversely proportional to BMI. This has led to renewed interest in the tissue as a therapeutic target for the treatment of obesity. Brown adipose tissue also plays a role in glucose disposal and triglyceride clearance, implicating it in the metabolic syndrome. A potential mechanism for increasing thermogenesis is by the ‘browning’ of white adipose depots through the recruitment of the recently identified third type of adipocyte — the brite (or beige) fat cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Afzelius BA. Brown adipose tissue: its gross anatomy, histology, and cytology. In: Lindberg O, editor. Brown Adipose Tissue. New York: American Elsevier; 1970. p. 1–31.

    Google Scholar 

  2. Smith RE, Horwitz BA. Brown fat and thermogenesis. Physiol Rev. 1969;49:330–425.

    CAS  PubMed  Google Scholar 

  3. Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC, Shaikh SA, et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med. 2012;18:1575–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Golozoubova V, Cannon B, Nedergaard J. UCP1 is essential for adaptive adrenergic nonshivering thermogenesis. Am J Physiol Endocrinol Metab. 2006;291:E350–7.

    Article  CAS  PubMed  Google Scholar 

  5. Nicholls DG. Brown adipose tissue mitochondria. Biochim Biophys Acta. 1979;549:1–29.

    Article  CAS  PubMed  Google Scholar 

  6. Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat. Physiol Rev. 1984;64:1–64.

    CAS  PubMed  Google Scholar 

  7. Ricquier D, Kader JC. Mitochondrial protein alterations in active brown fat: a sodium dodecyl sulfate-polyacrylamide gel electrophoretic study. Biochem Biophys Res Commun. 1976;73:577–83.

    Article  CAS  PubMed  Google Scholar 

  8. Ricquier D. Molecular biology of brown adipose tissue. Proc Nutr Soc. 1989;48:183–7.

    Article  CAS  PubMed  Google Scholar 

  9. Foster DO, Frydman ML. Nonshivering thermogenesis in the rat. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline. Can J Physiol Pharmacol. 1978;56:110–22.

    Article  CAS  PubMed  Google Scholar 

  10. Foster DO, Frydman ML. Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats re-evaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by non-shivering thermogenesis. Can J Physiol Pharmacol. 1979;57:257–70.

    Article  CAS  PubMed  Google Scholar 

  11. Thurlby PL, Ellis RD. Differences between the effects of noradrenaline and the β-adrenoceptor agonist BRL 28410 in brown adipose tissue and hind limb of the anaesthetized rat. Can J Physiol Pharmacol. 1986;64:1111–4.

    Article  CAS  PubMed  Google Scholar 

  12. Rothwell NJ, Stock MJ. A role for brown adipose tissue in diet-induced thermogenesis. Nature. 1979;281:31–5.

    Article  CAS  PubMed  Google Scholar 

  13. Brooks SL, Rothwell NJ, Stock MJ, Goodbody AE, Trayhurn P. Increased proton conductance pathway in brown adipose tissue mitochondria of rats exhibiting diet-induced thermogenesis. Nature. 1980;286:274–6.

    Article  CAS  PubMed  Google Scholar 

  14. Kozak LP. Brown fat and the myth of diet-induced thermogenesis. Cell Metab. 2010;11:263–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Trayhurn P. Brown adipose tissue and energy balance. In: Trayhurn P, Nicholls DG, editors. Brown Adipose Tissue. London: Edward Arnold; 1986. p. 299–388.

    Google Scholar 

  16. Himms-Hagen J. Brown adipose tissue thermogenesis and obesity. Prog Lipid Res. 1989;28:67–115.

    Article  CAS  PubMed  Google Scholar 

  17. Hull D. The function of brown adipose tissue in the newborn. Biochem Soc Trans. 1976;4:226–8.

    CAS  PubMed  Google Scholar 

  18. Trayhurn P, Thomas MEA, Keith JS. Postnatal development of uncoupling protein, uncoupling protein mRNA, and GLUT4 in adipose tissues of goats. Am J Physiol Regul Integr Comp Physiol. 1993;265:R676–82.

    CAS  Google Scholar 

  19. Finn D, Lomax MA, Trayhurn P. An immunohistochemical and in situ hybridisation study of the postnatal development of uncoupling protein-1 and uncoupling protein-1 mRNA in lamb perirenal adipose tissue. Cell Tissue Res. 1998;294:461–6.

    Article  CAS  PubMed  Google Scholar 

  20. Bouillaud F, Villarroya F, Hentz E, Raimbault S, Cassard AM, Ricquier D. Detection of brown adipose tissue uncoupling protein mRNA in adult humans by a genomic probe. Clin Sci. 1988;75:21–7.

    CAS  PubMed  Google Scholar 

  21. Lean MEJ, James WPT, Jennings G, Trayhurn P. Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci. 1986;7l:29l–7.

    Google Scholar 

  22. Ricquier D, Néchad M, Mory G. Ultrastructural and biochemical characterization of human brown adipose tissue in pheochromocytoma. J Clin Endocrinol Metab. 1982;54:803–7.

    Article  CAS  PubMed  Google Scholar 

  23. Lean MEJ, James WPT, Jennings G, Trayhurn P. Brown adipose tissue in patients with phaeochromocytoma. Int J Obes. 1986;l0:219–27.

    Google Scholar 

  24. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293:E444–52.

    Article  CAS  PubMed  Google Scholar 

  25. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.

    Article  CAS  PubMed  Google Scholar 

  27. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 2009;23:3113–20.

    Article  CAS  PubMed  Google Scholar 

  28. Lee P, Greenfield JR, Ho KKY, Fulham MJ. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2010;299:E601–6.

    Article  CAS  PubMed  Google Scholar 

  29. Pfannenberg C, Werner MK, Ripkens S, Stef I, Deckert A, Schmadl M, et al. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes. 2010;59:1789–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Schlögl M, Piaggi P, Thiyyagura P, Reiman EM, Chen K, Lutrin C, et al. Overfeeding over 24 hours does not activate brown adipose tissue in humans. J Clin Endocrinol Metab. 2013;98:E1956–60. This paper suggests that short-term overfeeding does not lead to an activation of brown adipose tissue thermogenesis in humans.

    Article  PubMed  Google Scholar 

  31. Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013;123:3404–8. This paper demonstrates that brown adipose tissue can be recruited (by cold exposure) even in subjects with low brown fat activity, indicating that the tissue is a potential site for increasing energy expenditure and reducing body fat.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Trayhurn P, Ashwell M, Jennings G, Richard D, Stirling DM. Effect of warm or cold exposure on GDP binding and uncoupling protein in rat brown fat. Am J Physiol Endocrinol Metab. 1987;252:E237–43.

    CAS  Google Scholar 

  33. Trayhurn P, Douglas JB, McGuckin MM. Brown adipose tissue thermogenesis is ‘suppressed’ during lactation in mice. Nature. 1982;298:59–60.

    Article  CAS  PubMed  Google Scholar 

  34. Trayhurn P, Jennings G. Nonshivering thermogenesis and the thermogenic capacity of brown fat in fasted and/or refed mice. Am J Physiol Regul Integr Comp Physiol. 1988;254:R11–6.

    CAS  Google Scholar 

  35. Orava J, Nuutila P, Lidell Martin E, Oikonen V, Noponen T, Viljanen T, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 2011;14:272–9.

    Article  CAS  PubMed  Google Scholar 

  36. Cypess AM, Chen Y-C, Sze C, Wang K, English J, Chan O, et al. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci U S A. 2012;109:10001–5. This study indicates that while cold stimulates brown adipose tissue activity in humans, the sympathomimetic ephedrine does not.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ouellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122:545–52. This paper reports cold-induced activation of oxidative metabolism in human brown adipose tissue associated with increased total energy expenditure.

    Article  PubMed Central  PubMed  Google Scholar 

  38. van der Lans AAJJ, Hoeks J, Brans B, Vijgen GHEJ, Visser M, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013;123:3395–403. This report proposes that energy expenditure can be raised, and obesity counteracted, through a variable environment with frequent cold exposure - by activation of brown fat.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Vosselman MJ, van der Lans AAJJ, Brans B, Wierts R, van Baak MA, Schrauwen P, et al. Systemic β-Adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans. Diabetes. 2012;61:3106–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Carey AL, Formosa MF, Every B, Bertovic D, Eikelis N, Lambert GW, et al. Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia. 2013;56:147–55.

    Article  CAS  PubMed  Google Scholar 

  41. Mattsson CL, Csikasz RI, Chernogubova E, Yamamoto DL, Hogberg HT, Amri E-Z, et al. β1-adrenergic receptors increase UCP1 in human MADS brown adipocytes and rescue cold-acclimated β3-adrenergic receptor-knockout mice via nonshivering thermogenesis. Am J Physiol Endocrinol Metab. 2011;301:E1108–18.

    Article  CAS  PubMed  Google Scholar 

  42. Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, et al. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring). 2011;19:1755–60.

    Article  Google Scholar 

  43. Saito M, Yoneshiro T. Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Curr Opin Lipidol. 2013;24:71–7.

    Article  CAS  PubMed  Google Scholar 

  44. Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr. 2012;95:845–50. This paper reports that capsinoids can increase energy expenditure in humans through the activation of brown adipose tissue.

    Article  CAS  PubMed  Google Scholar 

  45. Klein LJ, Visser FC, Knaapen P, Peters JH, Teule GJ, Visser CA, et al. Carbon-11 acetate as a tracer of myocardial oxygen consumption. Eur J Nucl Med. 2001;28:651–68.

    Article  CAS  PubMed  Google Scholar 

  46. van den Hoff J, Burchert W, Borner AR, Fricke H, Kuhnel G, Meyer GJ, et al. [1-(11)C]Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med. 2001;42:1174–82.

    PubMed  Google Scholar 

  47. Blondin DP, Labbe SM, Tingelstad HC, Noll C, Kunach M, Phoenix S, et al. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab. 2014;99:E438–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Burysek L, Houstek J. β-adrenergic stimulation of interleukin-1α and interleukin-6 expression in mouse brown adipocytes. FEBS Lett. 1997;411:83–6.

    Article  CAS  PubMed  Google Scholar 

  49. Buyse M, Viengchareun S, Bado A, Lombes M. Insulin and glucocorticoids differentially regulate leptin transcription and secretion in brown adipocytes. FASEB J. 2001;15:1357–66.

    Article  CAS  PubMed  Google Scholar 

  50. Villarroya J, Cereijo R, Villarroya F. An endocrine role for brown adipose tissue? Am J Physiol Endocrinol Metab. 2013;305:E567–72.

    Article  CAS  PubMed  Google Scholar 

  51. Dahlman I, Elsen M, Tennagels N, Korn M, Brockmann B, Sell H, et al. Functional annotation of the human fat cell secretome. Arch Physiol Biochem. 2012;118:84–91.

    Article  CAS  PubMed  Google Scholar 

  52. Lehr S, Hartwig S, Lamers D, Famulla S, Muller S, Hanisch FG, et al. Identification and validation of novel adipokines released from primary human adipocytes. Mol Cell Proteomics. 2012;11:M111 010504, 1-13.

  53. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5.

    Article  CAS  PubMed  Google Scholar 

  54. Stanford KI, Middelbeek RJW, Townsend KL, An D, Nygaard EB, Hitchcox KM, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest. 2013;123:215–23. This study in mice indicates that brown adipose tissue plays a major role in glucose homeostasis and insulin sensitivity.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Bartelt A, Heeren J. The holy grail of metabolic disease: brown adipose tissue. Curr Opin Lipidol. 2012;23:190–5.

    Article  CAS  PubMed  Google Scholar 

  56. Nedergaard J, Bengtsson T, Cannon B. New powers of brown fat: fighting the metabolic syndrome. Cell Metab. 2011;13:238–40.

    Article  CAS  PubMed  Google Scholar 

  57. Trayhurn P. Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand. 2005;184:285–93.

    Article  CAS  PubMed  Google Scholar 

  58. Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 2013;93:1–21.

    Article  CAS  PubMed  Google Scholar 

  59. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.

    Article  CAS  PubMed  Google Scholar 

  60. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454:961–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;285:7153–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Wu J, Boström P, Sparks Lauren M, Ye L, Choi Jang H, Giang A-H, et al. Beige Adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–76. This study also identifies the novel type of adipocyte, which is termed ‘beige’ (rather than the brite).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Waldén TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am J Physiol Endocrinol Metab. 2012;302:E19–31. This paper describes the key molecular features which distinguish the three different types of adipocyte.

    Article  PubMed  Google Scholar 

  64. Giralt M, Villarroya F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology. 2013;154:2992–3000.

    Article  CAS  PubMed  Google Scholar 

  65. Jespersen Naja Z, Larsen Therese J, Peijs L, Daugaard S, Homøe P, Loft A, et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 2013;17:798–805.

    Article  PubMed  Google Scholar 

  66. Rosell M, Kaforou M, Frontini A, Okolo A, Chan Y-W, Nikolopoulou E, et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab. 2014;306:E945–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8. This key paper reports the discovery of the hormone irisin which is secreted from muscle, particularly in response to exercise, and which stimulates the ‘browning’ of white adipose tissue depots.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Arch JR. β(3)-Adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol. 2002;440:99–107.

    Article  CAS  PubMed  Google Scholar 

  69. Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB, et al. Adiponectin acts in the brain to decrease body weight. Nat Med. 2004;10:524–9.

    Article  CAS  PubMed  Google Scholar 

  70. Qiao L, Yoo H, Bosco C, Lee B, Feng G-S, Schaack J, et al. Adiponectin reduces thermogenesis by inhibiting brown adipose tissue activation in mice. Diabetologia. 2014;57:1027–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Villarroya F, Vidal-Puig A. Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 2013;17:638–43.

    Article  CAS  PubMed  Google Scholar 

  72. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19:1252–63.

    Article  CAS  PubMed  Google Scholar 

  73. Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, Tinahones F, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab. 2013;98:E769–78. This paper reports decreased FNDC5 expression in human muscle and adipose tissue in obesity and type 2 diabetes, with decreased circulating levels of irisin in both conditions.

    Article  CAS  PubMed  Google Scholar 

  74. Wu J, Spiegelman BM. Irisin ERKs the Fat. Diabetes. 2014;63:381–3.

    Article  CAS  PubMed  Google Scholar 

  75. Irving B, Still C, Argyropoulos G. Does IRISIN have a BRITE future as a therapeutic agent in humans? Curr Obes Rep. 2014;3:235–41.

    Article  PubMed Central  PubMed  Google Scholar 

  76. van Marken Lichtenbelt WD, Schrauwen P. Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol. 2011;301:R285–96.

    Article  PubMed  Google Scholar 

  77. Bhaskaran K, Hajat S, Haines A, Herrett E, Wilkinson P, Smeeth L. Effects of ambient temperature on the incidence of myocardial infarction. Heart. 2009;95:1760–9.

    Article  CAS  PubMed  Google Scholar 

  78. Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes. 2012;61:674–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to their colleagues, past and present, for their help and support.

Compliance with Ethics Guidelines

Conflict of Interest

Paul Trayhurn and Jonathan RS Arch1 declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Trayhurn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trayhurn, P., Arch, J.R.S. New Physiological Aspects of Brown Adipose Tissue. Curr Obes Rep 3, 414–421 (2014). https://doi.org/10.1007/s13679-014-0125-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13679-014-0125-8

Keywords

Navigation