Skip to main content

Brown Adipose Tissue: A Short Historical Perspective

  • Protocol
  • First Online:
Brown Adipose Tissue

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2448))

Abstract

Brown adipose tissue (BAT) was first identified by Conrad Gessner in 1551, but it was only in 1961 that it was firmly identified as a thermogenic organ. Key developments in the subsequent two decades demonstrated that: (1) BAT is quantitatively important to non-shivering thermogenesis in rodents, (2) uncoupling of oxidative phosphorylation through a mitochondrial proton conductance pathway is the central mechanism by which heat is generated, (3) uncoupling protein-1 is the critical factor regulating proton leakage in BAT mitochondria. Following pivotal studies on cafeteria-fed rats and obese ob/ob mice, BAT was then shown to have a central role in the regulation of energy balance and the etiology of obesity. The application of fluorodeoxyglucose positron emission tomography in the late 2000s confirmed that BAT is present and active in adults, resulting in renewed interest in the tissue in human energetics and obesity. Subsequent studies have demonstrated a broad metabolic role for BAT, the tissue being an important site of glucose disposal and triglyceride clearance, as well as of insulin action. BAT continues to be a potential target for the treatment of obesity and related metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trayhurn P, Nicholl DG (eds) (1986) Brown adipose tissue. Edward Arnold, London

    Google Scholar 

  2. Lindberg O (ed) (1970) Brown adipose tissue. American Elsevier Publishing Company Inc, New York

    Google Scholar 

  3. Gesner C (1551) Conradi gesneri medici tigurini historiae animalium: Lib 1—de quadrupedibus viviparis (Zürich), p 842

    Google Scholar 

  4. Afzelius BA (1970) Brown adipose tissue: its gross anatomy, histology, and cytology. In: Lindberg O (ed) Brown adipose tissue. American Elsevier, New York, pp 1–31

    Google Scholar 

  5. Johansson B (1959) Brown fat: a review. Metabolism 8:221–240

    CAS  PubMed  Google Scholar 

  6. Smith RE (1961) Thermogenic activity of the hibernating gland. Physiologist 4:113

    Google Scholar 

  7. Smith RE, Horwitz BA (1969) Brown fat and thermogenesis. Physiol Rev 49:330–425

    CAS  PubMed  Google Scholar 

  8. Smith RE, Hock RJ (1963) Brown fat: thermogenic effector of arousal in hibernators. Science 140:199–200

    CAS  PubMed  Google Scholar 

  9. Dawkins MJ, Hull D (1964) Brown adipose tissue and the response of new-born rabbits to cold. J Physiol 172:216–238

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Trayhurn P (1979) Thermoregulation in the diabetic-obese (db/db) mouse. The role of non-shivering thermogenesis in energy balance. Pflügers Arch Eur J Physiol 380:227–232

    CAS  Google Scholar 

  11. Foster DO, Frydman ML (1977) Comparison of microspheres and 86RB+ as tracers of the distribution of cardiac output in rats indicates invalidity of 86Rb+-based measurements. Can J Physiol Pharmacol 56:97–109

    Google Scholar 

  12. Foster DO, Frydman ML (1979) Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats re-evaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by non-shivering thermogenesis. Can J Physiol Pharmacol 57:257–270

    CAS  PubMed  Google Scholar 

  13. Foster DO, Frydman ML (1978) Nonshivering thermogenesis in the rat. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline. Can J Physiol Pharmacol 56:110–122

    CAS  PubMed  Google Scholar 

  14. Thurlby PL, Trayhurn P (1980) Regional blood flow in genetically obese (ob/ob) mice: the importance of brown adipose tissue to the reduced energy expenditure on non-shivering thermogenesis. Pflügers Archiv Eur J Physiol 385:193–201

    CAS  Google Scholar 

  15. Thurlby PL, Ellis RD (1986) Differences between the effects of noradrenaline and the beta-adrenoceptor agonist BRL 28410 in brown adipose tissue and hind limb of the anaesthetized rat. Can J Physiol Pharmacol 64:1111–1114

    CAS  PubMed  Google Scholar 

  16. Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Physiol Rev 64:1–64

    CAS  PubMed  Google Scholar 

  17. Nicholls DG (2017) The hunt for the molecular mechanism of brown fat thermogenesis. Biochimie 134:9–18

    CAS  PubMed  Google Scholar 

  18. Ricquier D, Kader JC (1976) Mitochondrial protein alterations in active brown fat: a sodium dodecyl sulfate-polyacrylamide gel electrophoretic study. Biochem Biophys Res Commun 73:577–583

    CAS  PubMed  Google Scholar 

  19. Ricquier D (2017) UCP1, the mitochondrial uncoupling protein of brown adipocyte: a personal contribution and a historical perspective. Biochimie 134:3–8

    CAS  PubMed  Google Scholar 

  20. Ricquier D (1989) Molecular biology of brown adipose tissue. Proc Nutr Soc 48:183–187

    CAS  PubMed  Google Scholar 

  21. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D, Warden CH (1997) Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet 15:269–272

    CAS  PubMed  Google Scholar 

  22. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino JP (1997) Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett 408:39–42

    CAS  PubMed  Google Scholar 

  23. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    CAS  PubMed  Google Scholar 

  24. Trayhurn P, Ashwell M, Jennings G, Richard D, Stirling DM (1987) Effect of warm or cold exposure on GDP binding and uncoupling protein in rat brown fat. Am J Physiol Endocrinol Metab 252:E237–E243

    CAS  Google Scholar 

  25. Lean MEJ, James WPT (1983) Uncoupling protein in human brown adipose tissue mitochondria: isolation and detection by specific antiserum. FEBS Lett 163:235–240

    CAS  PubMed  Google Scholar 

  26. Ricquier D, Barlet JP, Garel JM, Combes GM, Dubois MP (1983) An immunological study of the uncoupling protein of brown adipose tissue mitochondria. Biochem J 210:859–866

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cannon B, Hedin A, Nedergaard J (1982) Exclusive occurrence of thermogenin antigen in brown adipose tissue. FEBS Lett 150:129–132

    CAS  PubMed  Google Scholar 

  28. Lin CS, Klingenberg EM (1980) Isolation of the uncoupling protein from brown adipose tissue mitochondria. FEBS Lett 113:299–303

    CAS  PubMed  Google Scholar 

  29. Himms-Hagen J (1991) Neural control of brown adipose tissue thermogenesis, hypertrophy, and atrophy. Front Neuroendocrinol 12:38–93

    Google Scholar 

  30. Arch JRS, Ainsworth AT, Cawthorne MA, Piercy V, Sennitti MV, Thody VE, Wilson C, Wilson S (1984) Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 309:163–165

    CAS  PubMed  Google Scholar 

  31. Arch JR (2002) β3-adrenoceptor agonists: potential, pitfalls and progress. Eur J Pharmacol 440:99–107

    CAS  PubMed  Google Scholar 

  32. Jastroch M, Oelkrug R, Keipert S (2018) Insights into brown adipose tissue evolution and function from non-model organisms. J Exp Biol 221:jeb169425

    PubMed  Google Scholar 

  33. Casteilla L, Forest C, Robelin J, Ricquier D, Lombet A, Ailhaud G (1987) Characterization of mitochondrial-uncoupling protein in bovine fetus and newborn calf. Am J Physiol Endocrinol Metab 252:E627–E636

    CAS  Google Scholar 

  34. Soppela P, Nieminen M, Saarela S, Keith JS, Morrison JN, Macfarlane F, Trayhurn P (1991) Brown fat-specific mitochondrial uncoupling protein in adipose tissues of newborn reindeer. Am J Physiol Regul Integr Comp Physiol 260:R1229–R1234

    CAS  Google Scholar 

  35. Finn D, Lomax MA, Trayhurn P (1998) An immunohistochemical and in situ hybridisation study of the postnatal development of uncoupling protein-1 and uncoupling protein-1 mRNA in lamb perirenal adipose tissue. Cell Tissue Res 294:461–466

    CAS  PubMed  Google Scholar 

  36. Trayhurn P, Thomas ME, Keith JS (1993) Postnatal development of uncoupling protein, uncoupling protein mRNA, and GLUT4 in adipose tissues of goats. Am J Physiol Regul Integr Comp Physiol 265:R676–R682

    CAS  Google Scholar 

  37. Ricquier D, Mory G, Bouillaud F, Thibault J, Weissenbach J (1984) Rapid increase of mitochondrial uncoupling protein and its mRNA in stimulated brown adipose tissue. FEBS Lett 178:240–244

    CAS  PubMed  Google Scholar 

  38. Bouillaud F, Ricquier D, Thibault J, Weissenbach J (1985) Molecular approach to thermogenesis in brown adipose tissue: cDNA cloning of the mitochondrial uncoupling protein. Proc Natl Acad Sci U S A 82:445–448

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bouillaud F, Ricquier D, Mory G, Thibault J (1984) Increased level of mRNA for the uncoupling protein in brown adipose tissue of rats during thermogenesis induced by cold exposure or norepinephrine infusion. J Biol Chem 259:11583–11586

    CAS  PubMed  Google Scholar 

  40. Rothwell NJ, Stock MJ (1979) A role for brown adipose tissue in diet-induced thermogenesis. Nature 281:31–35

    CAS  PubMed  Google Scholar 

  41. Rothwell NJ, Stock MJ (1983) Luxuskonsumption; diet-induced thermogenesis and brown fat: the case in favour. Clin Sci 64:19–23

    CAS  Google Scholar 

  42. Trayhurn P (1986) Brown adipose tissue and energy balance. In: Trayhurn P, Nicholls DG (eds) Brown adipose tissue. Edward Arnold, London, pp 299–388

    Google Scholar 

  43. Trayhurn P, Arch JRS (2020) Is energy expenditure reduced in obese mice with mutations in the leptin/leptin receptor genes? J Nutr Sci 9:e23

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Newsholme EA, Crabtree B (1976) Substrate cycles in metabolic regulation and in heat generation. Biochem Soc Symp 41:61–109

    CAS  Google Scholar 

  45. Miller BG, Grimble RF, Taylor TG (1977) Liver protein metabolism response to cold in genetically obese (ob/ob) mice. Nature 266:184–186

    CAS  PubMed  Google Scholar 

  46. York DA, Bray GA, Yukimura Y (1978) An enzymatic defect in the obese (ob/ob) mouse; loss of thyroid-induced sodium- and potassium-dependent adenosinetriphosphatase. Proc Natl Acad Sci U S A 75:477–481

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin MH, Romsos DR, Akera T, Leveille GA (1978) Na+, K+-ATPase enzyme units in skeletal muscle from lean and obese mice. Biochem Biophys Res Commun 80:398–404

    CAS  PubMed  Google Scholar 

  48. Trayhurn P (2020) Through fat and thin—a journey with the adipose tissues. Proc Nutr Soc 80:92–104

    Google Scholar 

  49. Himms-Hagen J, Desautels M (1978) A mitochondrial defect in brown adipose tissue of the obese (ob/ob) mouse: reduced binding of purine nucleotides and a failure to respond to cold by an increase in binding. Biochem Biophys Res Commun 83:628–634

    CAS  PubMed  Google Scholar 

  50. Trayhurn P, Milner RE (1989) A commentary on the interpretation of invitro biochemical measures of brown adipose tissue thermogenesis. Can J Physiol Pharmacol 67:811–819

    CAS  PubMed  Google Scholar 

  51. Brooks SL, Rothwell NJ, Stock MJ, Goodbody AE, Trayhurn P (1980) Increased proton conductance pathway in brown adipose tissue mitochondria of rats exhibiting diet-induced thermogenesis. Nature 286:274–276

    CAS  PubMed  Google Scholar 

  52. Nedergaard J, Raasmaja A, Cannon B (1984) Parallel increases in amount of (3H)GDP binding and thermogenin antigen in brown-adipose-tissue mitochondria of cafeteria-fed rats. Biochem Biophys Res Commun 122:1328–1336

    CAS  PubMed  Google Scholar 

  53. Falcou R, Bouillaud F, Mory G, Apfelbaum M, Ricquier D (1985) Increase of uncoupling protein and its mRNA in brown adipose tissue of rats fed on ‘cafeteria’ diet. Biochem J 231:241–244

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Himms-Hagen J (1989) Brown adipose tissue thermogenesis and obesity. Prog Lipid Res 28:67–115

    CAS  PubMed  Google Scholar 

  55. Fell BF, Smith KA, Campbell RM (1963) Hypertrophic and hyperplastic changes in the alimentary canal of the lactating rat. J Pathol Bacteriol 85:179–188

    CAS  PubMed  Google Scholar 

  56. Williamson DH (1980) Integration of metabolism in tissues of the lactating rat. FEBS Lett 117:K93–K104

    PubMed  Google Scholar 

  57. Trayhurn P, Douglas JB, McGuckin MM (1982) Brown adipose tissue thermogenesis is ‘suppressed’ during lactation in mice. Nature 298:59–60

    CAS  PubMed  Google Scholar 

  58. Trayhurn P, Jennings G (1987) Functional atrophy of brown adipose tissue in mice: effects of lactation and weaning on mitochondrial GDP binding and uncoupling protein. Biochem J 248:273–276

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Krol E, Speakman JR (2019) Switching off the furnace: brown adipose tissue and lactation. Mol Aspects Med 68:18–41

    CAS  PubMed  Google Scholar 

  60. Aherne W, Hull D (1966) Brown adipose tissue and heat production in the newborn infant. J Pathol Bacteriol 91:223–234

    CAS  PubMed  Google Scholar 

  61. Hull D (1966) The structure and function of brown adipose tissue. Br Med Bull 22:92–96

    CAS  PubMed  Google Scholar 

  62. Bouillaud F, Combes GM, Ricquier D (1983) Mitochondria of adult human brown adipose tissue contain a 32,000-Mr uncoupling protein. Biosci Rep 3:775–780

    CAS  PubMed  Google Scholar 

  63. Lean MEJ, James WPT, Jennings G, Trayhurn P (1986) Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci 71:291–297

    CAS  Google Scholar 

  64. Lean MEJ, James WPT (1986) Brown adipose tissue in man. In: Trayhurn P, Nicholls DG (eds) Brown adipose tissue. Edward Arnold, London, pp 339–365

    Google Scholar 

  65. Ricquier D, Néchad M, Mory G (1982) Ultrastructural and biochemical characterization of human brown adipose tissue in pheochromocytoma. J Clin Endocrinol Metab 54:803–807

    CAS  PubMed  Google Scholar 

  66. Lean MEJ, James WPT, Jennings G, Trayhurn P (1986) Brown adipose tissue in patients with phaeochromocytoma. Int J Obesity 10:219–227

    CAS  Google Scholar 

  67. Bouillaud F, Villarroya F, Hentz E, Raimbault S, Cassard AM, Ricquier D (1988) Detection of brown adipose tissue uncoupling protein mRNA in adult humans by a genomic probe. Clin Sci 75:21–27

    CAS  Google Scholar 

  68. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    PubMed  Google Scholar 

  69. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    CAS  PubMed  Google Scholar 

  71. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452

    CAS  PubMed  Google Scholar 

  72. Orava J, Nuutila P, Lidell Martin E, Oikonen V, Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerbäck S, Virtanen Kirsi A (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14:272–279

    CAS  PubMed  Google Scholar 

  73. Ouellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F, Turcotte EE, Richard D, Carpentier AC (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122:545–552

    PubMed  PubMed Central  Google Scholar 

  74. Cypess Aaron M, Weiner Lauren S, Roberts-Toler C, Elía Elisa F, Kessler Skyler H, Kahn Peter A, English J, Chatman K, Trauger Sunia A, Doria A, Kolodny Gerald M (2015) Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab 21:33–38

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gunawardana SC, Piston DW (2012) Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes 61:674–682

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nishio M, Yoneshiro T, Nakahara M, Suzuki S, Saeki K, Hasegawa M, Kawai Y, Akutsu H, Umezawa A, Yasuda K, Tobe K, Yuo A, Kubota K, Saito M, Saeki K (2012) Production of functional classical brown adipocytes from human pluripotent stem cells using specific hemopoietin cocktail without gene transfer. Cell Metab 16:394–406

    CAS  PubMed  Google Scholar 

  77. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164

    CAS  PubMed  Google Scholar 

  79. Wu J, Boström P, Sparks Lauren M, Ye L, Choi Jang H, Giang A-H, Khandekar M, Virtanen Kirsi A, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt Wouter D, Hoeks J, Enerbäck S, Schrauwen P, Spiegelman Bruce M (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Waldén TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J (2012) Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am J Physiol Endocrinol Metab 302:E19–E31

    PubMed  Google Scholar 

  81. Carobbio S, Guenantin AC, Samuelson I, Bahri M, Vidal-Puig A (2019) Brown and beige fat: from molecules to physiology and pathophysiology. Biochim Biophys Acta Mol Cell Biol Lipids 1864:37–50

    CAS  PubMed  Google Scholar 

  82. Bartelt A, Heeren J (2014) Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10:24–36

    CAS  PubMed  Google Scholar 

  83. Nedergaard J, Cannon B (2014) The browning of white adipose tissue: some burning issues. Cell Metab 20:396–407

    CAS  PubMed  Google Scholar 

  84. Sidossis LS, Porter C, Saraf MK, Børsheim E, Radhakrishnan RS, Chao T, Ali A, Chondronikola M, Mlcak R, Finnerty CC, Hawkins HK, Toliver-Kinsky T, Herndon DN (2015) Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab 22:219–227

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Than A, He HL, Chua SH, Xu D, Sun L, Leow MK-S, Chen P (2015) Apelin enhances brown adipogenesis and browning of white adipocytes. J Biol Chem 290:14679–14691

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang S, Wang X, Ye Z, Xu C, Zhang M, Ruan B, Wei M, Jiang Y, Zhang Y, Wang L, Lei X, Lu Z (2015) Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochem Biophys Res Commun 466:247–253

    CAS  PubMed  Google Scholar 

  87. Martínez-Sánchez N, Moreno-Navarrete JM, Contreras C, Rial-Pensado E, Fernø J, Nogueiras R, Diéguez C, Fernández-Real J-M, López M (2017) Thyroid hormones induce browning of white fat. J Endocrinol 232:351–362

    PubMed  Google Scholar 

  88. Silvester AJ, Aseer KR, Yun JW (2019) Dietary polyphenols and their roles in fat browning. J Nutr Biochem 64:1–12

    CAS  PubMed  Google Scholar 

  89. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PLSM, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200–205

    CAS  PubMed  Google Scholar 

  90. Nedergaard J, Bengtsson T, Cannon B (2011) New powers of brown fat: fighting the metabolic syndrome. Cell Metab 13:238–240

    CAS  PubMed  Google Scholar 

  91. Stanford KI, Middelbeek RJW, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng Y-H, Goodyear LJ (2013) Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 123:215–223

    CAS  PubMed  Google Scholar 

  92. Cooney GJ, Newsholme EA (1982) The maximum capacity of glycolysis in brown adipose tissue and its relationships to control of the blood glucose concentration. FEBS Lett 148:198–200

    CAS  PubMed  Google Scholar 

  93. Cooney GJ, Caterson ID, Newsholme EA (1985) The effect of insulin and noradrenaline on the uptake of 2-[1-14C]deoxyglucose in vivo by brown adipose tissue and other glucose-utilizing tissues of the mouse. FEBS Lett 188:257–261

    CAS  PubMed  Google Scholar 

  94. Mercer SW, Trayhurn P (1984) The development of insulin resistance in brown adipose tissue may impair the acute cold-induced activation of thermogenesis in genetically obese (ob/ob) mice. Biosci Rep 4:933–940

    CAS  PubMed  Google Scholar 

  95. Mercer SW, Trayhurn P (1986) Effects of ciglitazone on insulin resistance and thermogenic responsiveness to acute cold in brown adipose tissue of genetically obese (ob/ob) mice. FEBS Lett 195:12–16

    CAS  PubMed  Google Scholar 

  96. Villarroya J, Cereijo R, Villarroya F (2013) An endocrine role for brown adipose tissue? Am J Physiol Endocrinol Metab 305:E567–E572

    CAS  PubMed  Google Scholar 

  97. Villarroya F, Gavaldà-Navarro A, Peyrou M, Villarroya J, Giralt M (2017) The lives and times of brown adipokines. Trends Endocrinol Metab 28:855–867

    CAS  PubMed  Google Scholar 

  98. Deng CJ, Moinat M, Curtis L, Nadakal A, Preitner F, Boss O, Assimacopoulos-Jeannet F, Seydoux J, Giacobino JP (1997) Effects of β-adrenoceptor subtype stimulation on obese gene messenger ribonucleic acid and on leptin secretion in mouse brown adipocytes differentiated in culture. Endocrinology 138:548–552

    CAS  PubMed  Google Scholar 

  99. Burysek L, Houstek J (1997) β-adrenergic stimulation of interleukin-1 α and interleukin-6 expression in mouse brown adipocytes. FEBS Lett 411:83–86

    CAS  PubMed  Google Scholar 

  100. Cereijo R, Gavaldà-Navarro A, Cairó M, Quesada-López T, Villarroya J, Morón-Ros S, Sánchez-Infantes D, Peyrou M, Iglesias R, Mampel T, Turatsinze J-V, Eizirik DL, Giralt M, Villarroya F (2018) CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab 28:750–763

    CAS  PubMed  Google Scholar 

  101. Trayhurn P (2013) Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 93:1–21

    CAS  PubMed  Google Scholar 

  102. Villarroya F, Cereijo R, Villarroya J, Gavaldà-Navarro A, Giralt M (2018) Toward an understanding of how immune cells control brown and beige adipobiology. Cell Metab 27:954–961

    CAS  PubMed  Google Scholar 

  103. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I am grateful for the support of many colleagues and students throughout my research career. Funding support from a number of organizations for my work on brown fat is also gratefully acknowledged—particularly the Medical Research Council (UK), the Medical Research Council of Canada, the Alberta Heritage Foundation for Medical Research and the (former) Scottish Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Trayhurn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trayhurn, P. (2022). Brown Adipose Tissue: A Short Historical Perspective. In: Guertin, D.A., Wolfrum, C. (eds) Brown Adipose Tissue. Methods in Molecular Biology, vol 2448. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2087-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2087-8_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2086-1

  • Online ISBN: 978-1-0716-2087-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics