Skip to main content
Log in

Freight transportation planning considering carbon emissions and in-transit holding costs: a capacitated multi-commodity network flow model

  • Research Paper
  • Published:
EURO Journal on Transportation and Logistics

Abstract

To mitigate climate relevant air emissions from freight transportation, policy makers stimulate the application of intermodal freight transport chains. The evaluation and selection of intermodal routes based on the key objectives, i.e., greenhouse gas emission, transportation cost and transit time improvements, are the main challenges in the design of intermodal networks. It is the aim of this paper to provide decision support in intermodal freight transportation planning concerning route and carrier choice in transport service design and the assessment of emission abatement potentials. Core of this approach is a capacitated multi-commodity network flow model considering multiple criteria and in-transit inventory. Thereby two processes are modeled, i.e., the transport and transshipment of full truckloads (FTL), to define the material flow of goods through the network. The objective function of the developed network flow model minimizes the number of transported and transshipped FTL assessed by the weighted and normalized criteria (i.e., CO2-equivalents, cost, time) taking into account tied in-transit capital and the distance traveled. Thereby, the model regards carrier and terminal capacities, the option to transfer or either shift the mode and/or change the carrier at predefined terminal transshipment points. The model is incorporated in a decision support system and applied in an example application with industry data from an automotive supplier to demonstrate its application potentials. Within the application among others the potential benefits of the developed optimization model in comparison to a status quo are analyzed. Different criteria weightings and the influence of various levels of in-transit holding costs are investigated. In addition, the introduction of new transportation means such as the Eurocombi is assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnold D, Isermann H, Kuhn A, Tempelmeier H, Furmans K (2008) Handbuch logistik, 3rd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Bauer J, Bektas T, Crainic TG (2010) Minimizing greenhouse gas emissions in intermodal freight transport: an application to rail service design. J Oper Res Soc. doi:10.1057/jors.2009.102

    Google Scholar 

  • Bektas T, Crainic T (2008) A brief overview of intermodal transportation. In: Taylor GD (ed) Logistics engineering handbook. CRC Press, Boca Raton, pp 1–16 chapter 28

    Google Scholar 

  • Bektas T, Laporte G (2011) The pollution-routing problem. Transp Res Part B 45:1232–1250. doi:10.1016/j.trb.2011.02.004

    Article  Google Scholar 

  • Caris A, Macharis C, Janssens GK (2008) Planning problems in intermodal freight transport: accomplishments and prospects. Transport Plan Tech. doi:10.1080/03081060802086397

    Google Scholar 

  • Caris A, Macharis C, Janssens GK (2012) Decision support in intermodal transport: a new research agenda. Comput Ind. doi:10.1016/j.compind.2012.12.001

    Google Scholar 

  • Caris A, Macharis C, Janssens GK (2013) Decision support in intermodal transport: a new research agenda. Comput Ind 64(2013):105–112. doi:10.1016/j.compind.2012.12.001

    Article  Google Scholar 

  • Chang T-S (2007) Best routes selection in international intermodal networks. Comput Oper Res. doi:10.1016/j.cor.2006.12.025

    Google Scholar 

  • Christiansen M, Fagerholt K, Nygreen B, Ronen D (2007) Chapter 4 Maritime transportation. In: Barnhart C, Laporte G (eds) Transportation. Handbooks in operations research and management science, vol 14, pp 189–284. doi:10.1016/S0927-0507(06)14004-9

  • Christopher M (2011) Logistics and supply chain management, 4th edn. Pearson, Edinburgh

    Google Scholar 

  • Cirovic G, Pamucar D, Bozanic D (2014) Green logistic vehicle routing problem: routing light delivery vehicles in urban areas using a neuro-fuzzy model. Expert Syst Appl 41(2014):4245–4258. doi:10.1016/j.eswa.2014.01.005

    Article  Google Scholar 

  • Corbett JJ, Winebrake JJ, Hatcher J, Farrel AE (2007) Emissions analysis of freight transport comparing land-side and water-side short-sea routes: development and demonstration of a freight routing and emissions analysis tool (FREAT). US Department of Transportation. http://climate.dot.gov/documents/emissions_analysis_of_freight.pdf. Accessed 29 Dec 2013

  • Crainic TG (2000) Service network design in freight transportation. Euro J Oper Res. doi:10.1016/S0377-2217(99)00233-7

    Google Scholar 

  • Crainic TG (2002) A survey of optimization models for long-haul freight transportation. In: Hall RW (ed) Handbook of Transportation Science, 2nd edn. Kluwer, Boston

    Google Scholar 

  • Crainic TG, Dejax PJ (1987) Freight distribution and transport systems planning. Logist Inf Manag. doi:10.1108/eb007517

    Google Scholar 

  • Crainic TG, Kim KH (2007) Intermodal transportation. Handb Oper Res Manag Sci. doi:10.1016/S0927-0507(06)14008-6

    Google Scholar 

  • Crainic TG, Laporte G (1997) Planning models for freight transportation. Euro J Oper Res. doi:10.1016/S0377-2217(96)00298-6

    Google Scholar 

  • Current J, Min H (1986) Multiobjective design of transportation networks: taxonomy and annotation. Euro J Oper Res. doi:10.1016/0377-2217(86)90180-3

    Google Scholar 

  • Dekker R, Bloemhof J, Mallidis I (2012) Operations Research for green logistics: an overview of aspects, issues, contributions and challenges. Euro J Oper Res. doi:10.1016/j.ejor.2011.11.010

    Google Scholar 

  • Demir E, Bektas T, Laporte G (2014) The bi-objective pollution-routing problem. Eur J Oper Res 232(2014):464–478. doi:10.1016/j.ejor.2013.08.002

    Article  Google Scholar 

  • Domschke W (1985) Logistik: transport—grundlagen, lineare transport- und umladeprobleme. Oldenbourg, Munich

    Google Scholar 

  • Dorfman R (1960) Operations Research. Am Econ Rev 50:575–623

    Google Scholar 

  • EC (2013) EU transport in figures: statistical pocket book 2013. European Union, Luxembourg

  • EcoTransIT (2011) Ecological transport information tool for worldwide transports. http://www.ecotransit.org/download/ecotransit_background_report.pdf. Accessed 29 Dec 2013

  • EEA (2012) Climate change, impacts and vulnerability in Europe 2012: an indicator-based report. European Environment Agency, Copenhagen

    Google Scholar 

  • Floden J (2007) Modelling intermodal freight transport: the potential of combined transport in Sweden. Dissertation, University of Gothenburg

  • Franceschetti A, Honhon D, Van Woensel T, Bektaş T, Laporte G (2013) The time-dependent pollution-routing problem. Transp Res Part B Methodol 56(10):265–293. doi:10.1016/j.trb.2013.08.008

    Article  Google Scholar 

  • Froehling M, Zimmer K, Schultmann F (2013) A case study on route and haulier choice considering carbon emissions. Working paper, Karlsruhe Institute of Technology

  • Geldermann J (2006) Mehrzielentscheidung in der industriellen Produktion. University Press Karlsruhe, Karlsruhe

    Google Scholar 

  • Ghiani G, Laporte G, Musmanno R (2004) Introduction to logistics systems planning and control. Wiley, Chichester

    Google Scholar 

  • Goetschalckx M (2011) Supply chain engineering. Springer, London

    Book  Google Scholar 

  • Goetschalckx M, Vidal CJ, Dogan K (2002) Modeling and design of global logistics systems: a review of integrated strategic and tactical models and design algorithms. Euro J Oper Res. doi:10.1016/S0377-2217(02)00142-X

    Google Scholar 

  • Gross WF, Hayden C, Butz C (2012) About the impact of rising oil price on logistics networks and transportation greenhouse gas emission. Log Res 4:147–156

    Article  Google Scholar 

  • Gudehus T (2011) Logistik: Grundlagen—Strategien—Anwendungen, 4th edn. Springer, Heidelberg

    Google Scholar 

  • Helmreich S, Keller H (2011) Freightvision: sustainable European freight transport 2050. Springer, Heidelberg

    Book  Google Scholar 

  • Hoen KMR, Tan T, Fransoo JC, van Houtum GJ (2011) Switching transport modes to meet voluntary carbon emission targets. Flex Serv Manuf J. doi:10.1007/s10696-012-9151-6

    Google Scholar 

  • Hoen KMR, Tan T, Fransoo JC, van Houtum GJ (2012) Effect of carbon emission regulations on transport mode selection under stochastic demand. Flex Serv Manuf J. doi:10.1007/s10696-012-9151-6

    Google Scholar 

  • Hoff A, Andersson H, Christiansed M, Hasle G, Lokkerangen A (2010) Industrial aspects and literature survey: fleet composition and routing. Comput Oper Res. doi:10.1016/j.cor.2010.03.015

    Google Scholar 

  • Janic M, Regglani A, Nijkamp P (1999) Sustainability of the European freight transport system: evaluation of innovative bundling networks. Transp Plan Technol. doi:10.1080/03081069908717644

    Google Scholar 

  • Kallrath J, Wilson JM (1997) Business Optimisation Using Mathematical Programming. Macmillan, Basingstoke

    Google Scholar 

  • Kranke A, Schmied M, Schön A (2011) CO2-Berechnung in der Logistik. Vogel, Munich

    Google Scholar 

  • Kumar S (2008) Inventory logistics cost analysis model for the proposed EU intermodal loading unit: a business case. Inf Knowl Syst Manag 7:335–355

    Google Scholar 

  • Laporte G (2013) Scheduling issues in vehicle routing. Ann Oper Res. doi:10.1007/s10479-013-1423-3

    Google Scholar 

  • Macharis C, Bontekoning YM (2004) Opportunities for OR in intermodal freight transport research: a review. Euro J Oper Res. doi:10.1016/S0377-2217(03)00161-9

    Google Scholar 

  • Meixel MJ, Norbis M (2008) A review of the transportation mode choice and carrier selection literature. Int J Logist Manag. doi:10.1108/09574090810895951

    Google Scholar 

  • Min H (1990) International intermodal choices via chance-constrained goal programming. Transp Res. doi:10.1016/0191-2607(91)90013-G

    Google Scholar 

  • Riekst BQ, Ventura JA (2008) Optimal inventory policies with two modes of freight transportation. Euro J Oper Res. doi:10.1016/j.ejor.2007.01.042

    Google Scholar 

  • Seiler T (2012) Operative transportation planning: solutions in consumer goods supply chains. Dissertation, Technical University of Berlin

  • SteadieSeifi M, Dellaert NP, Nuijten W, Van Woensel T, Raoufi R (2014) Multimodal freight transportation planning: a literature review. Eur J Oper Res 233(2014):1–15. doi:10.1016/j.ejor.2013.06.055

    Article  Google Scholar 

  • Yaghini M, Akhavan R (2012) Multicommodity Network Design Problem in Rail Freight Transportation Planning. Procedia- Soc Behav Sci. doi:10.1016/j.sbspro.2012.04.146

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the editor and three anonymous referees for their most valuable and constructive comments which helped to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Fröhling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudi, A., Fröhling, M., Zimmer, K. et al. Freight transportation planning considering carbon emissions and in-transit holding costs: a capacitated multi-commodity network flow model. EURO J Transp Logist 5, 123–160 (2016). https://doi.org/10.1007/s13676-014-0062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13676-014-0062-4

Keywords

Navigation