Skip to main content

Advertisement

Log in

Greasing the Wheels of Pharmacotherapy for Colorectal Cancer: the Role of Natural Polyphenols

  • REVIEW
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The main purpose of this review, mainly based on preclinical studies, is to summarize the pharmacological and biochemical evidence regarding natural polyphenols against colorectal cancer and highlight areas that require future research.

Recent Findings

Typically, colorectal cancer is a potentially preventable and curable cancer arising from benign precancerous polyps found in the colon’s inner lining. Colorectal cancer is the third most common cancer, with a lifetime risk of approximately 4 to 5%. Genetic background and environmental factors play major roles in the pathogenesis of colorectal cancer. Theoretically, a multistep process of colorectal carcinogenesis provides enough time for anti-tumor pharmacotherapy of colorectal cancer. Chronic colonic inflammation, oxidative stress, and gut microbiota imbalance have been found to increase the risk for colorectal cancer development by creating genotoxic stress within the intestinal environment to generate genetic mutations and epigenetic modifications. Currently, numerous natural polyphenols have shown anti-tumor properties against colorectal cancer in preclinical research, especially in colorectal cancer cell lines.

Summary

In this review, the current literature regarding the etiology and epidemiology of colorectal cancer is briefly outlined. We highlight the findings of natural polyphenols in colorectal cancer from in vitro and in vivo studies. The scarcity of human trials data undermines the clinical use of natural polyphenols as anti-colorectal cancer agents, which should be undertaken in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, Chengu Niu, upon reasonable request.

Abbreviations

5-mC :

5-Methylcytosine

ACF :

Aberrant crypt foci

AOM :

Azoxymethane

APC :

Adenomatous polyposis coli

BAX :

Bcl-2-associated X protein

BRAF :

B type Raf kinase

CIMP :

CpG island methylator phenotype

CIN :

Chromosomal instability

DMH :

1,2-Dimethylhydrazine

CRC :

Colorectal cancer

DSS,:

Dextran sodium sulfate

ERK :

Extracellular signal-regulated kinases

GDP :

Guanosine diphosphate

GTP :

Guanosine triphosphate

HIF-1α :

Hypoxia inducible factor-1α

KRAS :

Kirsten rat sarcoma

mTOR :

Mechanistic target of rapamycin

MEK :

Mitogen-activated protein kinase kinase

MMR :

Mismatch repair

MSI :

Microsatellite instability

NF-κB :

Nuclear factor-κB

PI3K :

Phosphatidylinositol-3-kinase

RAF :

Rapidly accelerated fibrosarcoma

RAGE :

Receptor for advanced glycosylation end products

RAS :

Rat sarcoma

ROS :

Reactive oxygen species

SSL :

Sessile serrated lesions

STAT3 :

Signal transducer and activator of transcription 3

TGF-β RII :

Transforming growth factor -beta type II receptors

TLR4 :

Toll-like receptor 4

TNF-α :

Tumor necrosis factors α

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. van Toledo DEFWM, IJspeert JEG, Boersma H, Musler AR, Bleijenberg AGC, Dekker E, et al. Polyps and colorectal cancer in serrated polyposis syndrome: contribution of the classical adenoma-carcinoma and serrated neoplasia pathways. Clin Transl Gastroenterol. 2023;14(8):e00611.

  2. Li J, He C, Gong J, Wang X, Liu C, Deng A, et al. Identification of a novel CNV at the APC gene in a Chinese family with familial adenomatous polyposis. Front Mol Biosci. 2023;10:1234296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vital M, Carusso F, Vergara C, Neffa F, Della Valle A, Esperón P. Genetic and epigenetic characteristics of patients with colorectal cancer from Uruguay. Pathol Res Pract. 2023;241: 154264.

    Article  CAS  PubMed  Google Scholar 

  4. Ahmad O, Försti A. The complementary roles of genome-wide approaches in identifying genes linked to an inherited risk of colorectal cancer. Hered Cancer Clin Pract. 2023;21(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li L, Fang YJ, Abulimiti A, Huang CY, Liu KY, Chen YM, et al. Educational level and colorectal cancer risk: the mediating roles of lifestyle and dietary factors. Eur J Cancer Prev. 2022;31(2):137–44.

    Article  PubMed  Google Scholar 

  6. Wang K, Olén O, Emilsson L, Khalili H, Halfvarson J, Song M, et al. Association of inflammatory bowel disease in first-degree relatives with risk of colorectal cancer: a nationwide case-control study in Sweden. Int J Cancer. 2023;152(11):2303–13.

    Article  CAS  PubMed  Google Scholar 

  7. Krishnan T, Wang F, Karapetis C, Roy A, Price T. Primary site and treatment impact in unresectable metastatic colorectal cancer. Expert Rev Anticancer Ther. 2023;23(6):617–23.

    Article  CAS  PubMed  Google Scholar 

  8. Lu YT, Gunathilake M, Kim J. The influence of dietary vegetables and fruits on endometrial cancer risk: a meta-analysis of observational studies. Eur J Clin Nutr. 2023;77(5):561–73.

    Article  PubMed  Google Scholar 

  9. Mori N, Murphy N, Sawada N, Achaintre D, Yamaji T, Scalbert A, et al. Prediagnostic plasma polyphenol concentrations and colon cancer risk: The JPHC nested case-control study. Clin Nutr. 2022;41(9):1950–60.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Liu K, Yan C, Yin Y, He S, Qiu L, et al. Natural polyphenols for treatment of colorectal cancer. Molecules. 2022;27(24):8810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Selvakumar T, Mu SZ, Prasath V, Arjani S, Chokshi RJ, Kra J. Colon cancer epidemiology, race and socioeconomic status: comparing trends in counties served by an urban hospital in Newark, NJ with overall NJ-state and nation-wide patterns. Cancer Epidemiol. 2023;86: 102412.

    Article  PubMed  Google Scholar 

  12. Brenner H, Hoffmeister M, Stegmaier C, Brenner G, Altenhofen L, Haug U. Risk of progression of advanced adenomas to colorectal cancer by age and sex: estimates based on 840,149 screening colonoscopies. Gut. 2007;56(11):1585–9.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zessner-Spitzenberg J, Jiricka L, Waldmann E, Rockenbauer LM, Cook J, Hinterberger A, et al. Polyp characteristics at screening colonoscopy and post-colonoscopy colorectal cancer mortality: a retrospective cohort study. Gastrointest Endosc. 2023;97(6):1109-18.e2.

    Article  PubMed  Google Scholar 

  14. Kenkhuis MF, Mols F, van Roekel EH, Breedveld-Peters JJL, Breukink SO, Janssen-Heijnen MLG, et al. Longitudinal Associations of Adherence to the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Lifestyle Recommendations with Quality of Life and Symptoms in Colorectal Cancer Survivors up to 24 Months Post-Treatment. Cancers (Basel). 2022;14(2):417.

    Article  PubMed  Google Scholar 

  15. Hua H, Jiang Q, Sun P, Xu X. Risk factors for early-onset colorectal cancer: systematic review and meta-analysis. Front Oncol. 2023;13:1132306.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Seo JY, Jin EH, Chung GE, Kim YS, Bae JH, Yim JY, et al. The risk of colorectal cancer according to obesity status at four-year intervals: a nationwide population-based cohort study. Sci Rep. 2023;13(1):8928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mandic M, Safizadeh F, Niedermaier T, Hoffmeister M, Brenner H. Association of overweight, obesity, and recent weight loss with colorectal cancer risk. JAMA Netw Open. 2023;6(4): e239556.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kenkhuis MF, Mols F, van Roekel EH, Breedveld-Peters JJL, Breukink S, Janssen-Heijnen M, et al. Longitudinal associations of fast foods, red and processed meat, alcohol and sugar-sweetened drinks with quality of life and symptoms in colorectal cancer survivors up to 24 months post-treatment. Br J Nutr. 2023;130(1):114–26.

    Article  CAS  PubMed  Google Scholar 

  19. Abu-Ghazaleh N, Chua WJ, Gopalan V. Intestinal microbiota and its association with colon cancer and red/processed meat consumption. J Gastroenterol Hepatol. 2021;36(1):75–88.

    Article  CAS  PubMed  Google Scholar 

  20. Wang L, Yu KC, Hou YQ, Guo M, Yao F, Chen ZX. Gut microbiome in tumorigenesis and therapy of colorectal cancer. J Cell Physiol. 2023;238(1):94–108.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Lau HC, Cheng WY, Yu J. Gut microbiome in colorectal cancer: clinical diagnosis and treatment. Genomics Proteomics Bioinformatics. 2023;21(1):84–96.

    Article  PubMed  Google Scholar 

  22. Sánchez-Alcoholado L, Ramos-Molina B, Otero A, Laborda-Illanes A, Ordóñez R, Medina JA, et al. The role of the gut microbiome in colorectal cancer development and therapy response. Cancers (Basel). 2020;12(6):1406.

    Article  PubMed  Google Scholar 

  23. Zhou Z, Ge S, Li Y, Ma W, Liu Y, Hu S, et al. Human gut microbiome-based knowledgebase as a biomarker screening tool to improve the predicted probability for colorectal cancer. Front Microbiol. 2020;11: 596027.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Deng Y, Huang J, Wong MCS. Associations of alcohol and coffee with colorectal cancer risk in East Asian populations: a Mendelian randomization study. Eur J Nutr. 2023;62(2):749–56.

    CAS  PubMed  Google Scholar 

  25. Abbott J, Näthke IS. The adenomatous polyposis coli protein 30 years on. Semin Cell Dev Biol. 2023;150–151:28–34.

    Article  PubMed  Google Scholar 

  26. Zhang R, Hu M, Chen HN, Wang X, Xia Z, Liu Y, et al. Phenotypic heterogeneity analysis of APC-mutant colon cancer by proteomics and phosphoproteomics identifies RAI14 as a key prognostic determinant in East Asians and Westerners. Mol Cell Proteomics. 2023;22(5): 100532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Poulikakos PI, Sullivan RJ, Yaeger R. Molecular pathways and mechanisms of BRAF in cancer therapy. Clin Cancer Res. 2022;28(21):4618–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ruiz-Saenz A, Atreya CE, Wang C, Pan B, Dreyer CA, Brunen D, et al. A reversible SRC-relayed COX2 inflammatory program drives resistance to BRAF and EGFR inhibition in BRAFV600E colorectal tumors. Nat Cancer. 2023;4(2):240–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zwart K, van der Baan FH, Cohen R, Aparicio T, de la Fouchardiére C, Lecomte T, et al. Prognostic value of Lynch syndrome, BRAFV600E, and RAS mutational status in dMMR/MSI-H metastatic colorectal cancer in a pooled analysis of Dutch and French cohorts. Cancer Med. 2023;12(15):15841–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wan YH, Liu QS, Wan SS, Wang RW. Colorectal cancer-derived exosomes and modulation KRAS signaling. Clin Transl Oncol. 2022;24(11):2074–80.

    Article  CAS  PubMed  Google Scholar 

  31. Kim HJ, Han CW, Jeong MS, Jang SB. Structural basis of the oncogenic KRAS mutant and GJ101 complex. Biochem Biophys Res Commun. 2023;641:27–33.

    Article  CAS  PubMed  Google Scholar 

  32. Tria SM, Burge ME, Whitehall VLJ. The therapeutic landscape for KRAS-mutated colorectal cancers. Cancers (Basel). 2023;15(8):2375.

    Article  CAS  PubMed  Google Scholar 

  33. Golas MM, Gunawan B, Cakir M, Cameron S, Enders C, Liersch T, et al. Evolutionary patterns of chromosomal instability and mismatch repair deficiency in proximal and distal colorectal cancer. Colorectal Dis. 2022;24(2):157–76.

    Article  CAS  PubMed  Google Scholar 

  34. Pai CC, Durley SC, Cheng WC, Chiang NY, Peters J, Kasparek T, et al. Homologous recombination suppresses transgenerational DNA end resection and chromosomal instability in fission yeast. Nucleic Acids Res. 2023;51(7):3205–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lakbir S, Lahoz S, Cuatrecasas M, Camps J, Glas RA, Heringa J, et al. Tumour break load is a biologically relevant feature of genomic instability with prognostic value in colorectal cancer. Eur J Cancer. 2022;177:94–102.

    Article  CAS  PubMed  Google Scholar 

  36. Styk J, Pös Z, Pös O, Radvanszky J, Turnova EH, Buglyó G, et al. Microsatellite instability assessment is instrumental for predictive, preventive and personalised medicine: status quo and outlook. EPMA J. 2023;14(1):143–65.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Devall M, Ali MW, Eaton S, Weisenberger DJ, Reilley MJ, Powell SM, et al. Multi-omic analysis in normal colon organoids highlights MSH4 as a novel marker of defective mismatch repair in Lynch syndrome and microsatellite instability. Cancer Med. 2023;12(12):13551–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ohki D, Yamamichi N, Sakaguchi Y, Takahashi Y, Kageyama-Yahara N, Yamamichi M, et al. Transcriptome of sessile serrated adenoma/polyps is associated with MSI-high colorectal cancer and decreased expression of CDX2. Cancer Med. 2022;11(24):5066–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang J, Deng Z, Lang X, Jiang J, Xie K, Lu S, et al. Meta-analysis of the prognostic and predictive role of the CpG island methylator phenotype in colorectal cancer. Dis Markers. 2022;2022:4254862.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gu P, Zeng Y, Ma W, Zhang W, Liu Y, Guo F, et al. Characterization of the CpG island methylator phenotype subclass in papillary thyroid carcinoma. Front Endocrinol (Lausanne). 2022;13:1008301.

    Article  PubMed  Google Scholar 

  41. Rathee P, Sehrawat R, Rathee P, Khatkar A, Akkol EK, Khatkar S, et al. Polyphenols: natural preservatives with promising applications in food, cosmetics and pharma industries; problems and toxicity associated with synthetic preservatives; impact of misleading advertisements; recent trends in preservation and legislation. Materials (Basel). 2023;16(13):4793.

    Article  CAS  PubMed  Google Scholar 

  42. Li Y, Wang J, Zhong S, Li J, Du W. Scutellarein inhibits the development of colon cancer via CDC4 mediated RAGE ubiquitination. Int J Mol Med. 2020;45(4):1059–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li M, Tan SY, Zhang J, You HX. Effects of paeonol on intracellular calcium concentration and expression of RUNX3 in LoVo human colon cancer cells. Mol Med Rep. 2013;7(5):1425–30.

    Article  CAS  PubMed  Google Scholar 

  44. Smiljkovic M, Stanisavljevic D, Stojkovic D, Petrovic I, Marjanovic Vicentic J, Popovic J, et al. Apigenin-7-O-glucoside versus apigenin: insight into the modes of anticandidal and cytotoxic actions. EXCLI J. 2017;16:795–807.

    PubMed  PubMed Central  Google Scholar 

  45. Cárdeno A, Sánchez-Hidalgo M, Rosillo MA, Alarcón de la Lastra C. Oleuropein, a secoiridoid derived from olive tree, inhibits the proliferation of human colorectal cancer cell through downregulation of HIF-1α. Nutr Cancer. 2013;65(1):147–56.

  46. • Acquaviva R, Tomasello B, Di Giacomo C, Santangelo R, La Mantia A, Naletova I, et al. Protocatechuic acid, a simple plant secondary metabolite, induced apoptosis by promoting oxidative stress through HO-1 downregulation and p21 upregulation in colon cancer cells. Biomolecules. 2021;11(10):1485. This in vitro study identifies protocatechuic acid as an apoptosis inducer against colon cancer.

  47. Szoka L, Nazaruk J, Stocki M, Isidorov V. Santin and cirsimaritin from Betula pubescens and Betula pendula buds induce apoptosis in human digestive system cancer cells. J Cell Mol Med. 2021;25(24):11085–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. • Zeya B, Nafees S, Imtiyaz K, Uroog L, Fakhri KU, Rizvi MMA. Diosmin in combination with naringenin enhances apoptosis in colon cancer cells. Oncol Rep. 2022;47(1):4. This pre-clinical study showed synergistic effects of diosmin in combination with naringenin against colon cancer.

  49. Cheng AC, Lee MF, Tsai ML, Lai CS, Lee JH, Ho CT, et al. Rosmanol potently induces apoptosis through both the mitochondrial apoptotic pathway and death receptor pathway in human colon adenocarcinoma COLO 205 cells. Food Chem Toxicol. 2011;49(2):485–93.

    Article  CAS  PubMed  Google Scholar 

  50. Yin H, Wang L, Wu M, Liu Y, Li N, Chen T. Cyanidin-3-O-glucoside chloride acts synergistically with luteolin to inhibit the growth of colon and breast carcinoma cells. Pharmazie. 2019;74(1):54–61.

    CAS  PubMed  Google Scholar 

  51. Wang B, Zhao XH. Apigenin induces both intrinsic and extrinsic pathways of apoptosis in human colon carcinoma HCT-116 cells. Oncol Rep. 2017;37(2):1132–40.

    Article  CAS  PubMed  Google Scholar 

  52. Kim DH, Park KW, Chae IG, Kundu J, Kim EH, Kundu JK, et al. Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Mol Carcinog. 2016;55(6):1096–110.

    Article  CAS  PubMed  Google Scholar 

  53. Park KW, Kundu J, Chae IG, Kim DH, Yu MH, Kundu JK, et al. Carnosol induces apoptosis through generation of ROS and inactivation of STAT3 signaling in human colon cancer HCT116 cells. Int J Oncol. 2014;44(4):1309–15.

    Article  CAS  PubMed  Google Scholar 

  54. Sivagami G, Vinothkumar R, Bernini R, Preethy CP, Riyasdeen A, Akbarsha MA, et al. Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT-29 human colon adenocarcinoma cell line–a comparative study. Food Chem Toxicol. 2012;50(3–4):660–71.

    Article  CAS  PubMed  Google Scholar 

  55. Majeed H, Antoniou J, Fang Z. Apoptotic effects of eugenol-loaded nanoemulsions in human colon and liver cancer cell lines. Asian Pac J Cancer Prev. 2014;15(21):9159–64.

    Article  PubMed  Google Scholar 

  56. Su MQ, Zhou YR, Rao X, Yang H, Zhuang XH, Ke XJ, et al. Baicalein induces the apoptosis of HCT116 human colon cancer cells via the upregulation of DEPP/Gadd45a and activation of MAPKs. Int J Oncol. 2018;53(2):750–60.

    CAS  PubMed  Google Scholar 

  57. Bahadori M, Baharara J, Amini E. Anticancer properties of chrysin on colon cancer cells, in vitro and in vivo with modulation of caspase-3, -9, Bax and Sall4. Iran J Biotechnol. 2016;14(3):177–84.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ha TK, Kim ME, Yoon JH, Bae SJ, Yeom J, Lee JS. Galangin induces human colon cancer cell death via the mitochondrial dysfunction and caspase-dependent pathway. Exp Biol Med (Maywood). 2013;238(9):1047–54.

    Article  PubMed  Google Scholar 

  59. Luan Y, Luan Y, Zhao Y, Xiong F, Li Y, Liu L, et al. Isorhamnetin in Tsoong blocks Hsp70 expression to promote apoptosis of colon cancer cells. Saudi J Biol Sci. 2019;26(5):1011–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kumar MA, Nair M, Hema PS, Mohan J, Santhoshkumar TR. Pinocembrin triggers Bax-dependent mitochondrial apoptosis in colon cancer cells. Mol Carcinog. 2007;46(3):231–41.

    Article  CAS  PubMed  Google Scholar 

  61. •• Özgöçmen M, Bayram D, Yavuz Türel G, Toğay VA, Şahin CN. Secoisolariciresinol diglucoside induces caspase-3-mediated apoptosis in monolayer and spheroid cultures of human colon carcinoma cells. J Food Biochem. 2021;45(5): e13719. Preclinical assessment of secoisolariciresinol diglucoside targeting apoptosis against colon cancer.

  62. Chiang EP, Tsai SY, Kuo YH, Pai MH, Chiu HL, Rodriguez RL, et al. Caffeic acid derivatives inhibit the growth of colon cancer: involvement of the PI3-K/Akt and AMPK signaling pathways. PLoS ONE. 2014;9(6): e99631.

    Article  PubMed  PubMed Central  Google Scholar 

  63. • Kim JL, Lee DH, Pan CH, Park SJ, Oh SC, Lee SY. Role of phloretin as a sensitizer to TRAIL-induced apoptosis in colon cancer. Oncol Lett. 2022;24(3):321. This study highlights the phloretin as a sensitizer against colon cancer.

  64. • Lin X, Wang G, Liu P, Han L, Wang T, Chen K, et al. Gallic acid suppresses colon cancer proliferation by inhibiting SRC and EGFR phosphorylation. Exp Ther Med. 2021;21(6):638. This research demonstrates gallic acid as a potential inhibitor of colon cancer proliferation.

  65. Norden E, Heiss EH. Urolithin A gains in antiproliferative capacity by reducing the glycolytic potential via the p53/TIGAR axis in colon cancer cells. Carcinogenesis. 2019;40(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  66. Lee DE, Lee KW, Jung SK, Lee EJ, Hwang JA, Lim TG, et al. 6,7,4’-trihydroxyisoflavone inhibits HCT-116 human colon cancer cell proliferation by targeting CDK1 and CDK2. Carcinogenesis. 2011;32(4):629–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yit CC, Das NP. Cytotoxic effect of butein on human colon adenocarcinoma cell proliferation. Cancer Lett. 1994;82(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  68. Shafiee G, Saidijam M, Tavilani H, Ghasemkhani N, Khodadadi I. Genistein Induces Apoptosis and Inhibits Proliferation of HT29 Colon Cancer Cells. Int J Mol Cell Med. 2016;5(3):178–91.

    PubMed  PubMed Central  Google Scholar 

  69. Stompor M. A Review on sources and pharmacological aspects of sakuranetin. Nutrients. 2020;12(2):513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lucas J, Hsieh TC, Halicka HD, Darzynkiewicz Z, Wu JM. Upregulation of PD L1 expression by resveratrol and piceatannol in breast and colorectal cancer cellsL occurs via HDAC3/p300 mediated NF κB signaling. Int J Oncol. 2018;53(4):1469–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mervai Z, Sólyomváry A, Tóth G, Noszál B, Molnár-Perl I, Baghy K, et al. Endogenous enzyme-hydrolyzed fruit of Cirsium brachycephalum: optimal source of the antiproliferative lignan trachelogenin regulating the Wnt/β-catenin signaling pathway in the SW480 colon adenocarcinoma cell line. Fitoterapia. 2015;100:19–26.

    Article  CAS  PubMed  Google Scholar 

  72. Falandry C, List A, Balducci L. Cell cycle arrest: a breakthrough in the supportive care of older cancer patients. J Am Geriatr Soc. 2023;71(7):2297–307.

    Article  PubMed  Google Scholar 

  73. Ramadoss DP, Sivalingam N. Vanillin extracted from Proso and Barnyard millets induce apoptotic cell death in HT-29 human colon cancer cell line. Nutr Cancer. 2020;72(8):1422–37.

    Article  CAS  PubMed  Google Scholar 

  74. Koosha S, Mohamed Z, Sinniah A, Ibrahim ZA, Seyedan A, Alshawsh MA. Antiproliferative and apoptotic activities of 8-prenylnaringenin against human colon cancer cells. Life Sci. 2019;232: 116633.

    Article  CAS  PubMed  Google Scholar 

  75. López de Las Hazas MC, Piñol C, Macià A, Motilva MJ. Hydroxytyrosol and the colonic metabolites derived from virgin olive oil intake induce cell cycle arrest and apoptosis in colon cancer cells. J Agric Food Chem. 2017;65(31):6467–76.

  76. Cordero-Herrera I, Martín MA, Bravo L, Goya L, Ramos S. Epicatechin gallate induces cell death via p53 activation and stimulation of p38 and JNK in human colon cancer SW480 cells. Nutr Cancer. 2013;65(5):718–28.

    Article  CAS  PubMed  Google Scholar 

  77. Martineti V, Tognarini I, Azzari C, Carbonell Sala S, Clematis F, Dolci M, et al. Inhibition of in vitro growth and arrest in the G0/G1 phase of HCT8 line human colon cancer cells by kaempferide triglycoside from Dianthus caryophyllus. Phytother Res. 2010;24(9):1302–8.

    Article  CAS  PubMed  Google Scholar 

  78. Marel AK, Lizard G, Izard JC, Latruffe N, Delmas D. Inhibitory effects of trans-resveratrol analogs molecules on the proliferation and the cell cycle progression of human colon tumoral cells. Mol Nutr Food Res. 2008;52(5):538–48.

    Article  CAS  PubMed  Google Scholar 

  79. • Qin X, Luo H, Deng Y, Yao X, Zhang J, He B. Resveratrol inhibits proliferation and induces apoptosis via the Hippo/YAP pathway in human colon cancer cells. Biochem Biophys Res Commun. 2022;636(Pt 1):197–204. This pre-clinical study showed resveratrol-induced apoptosis of colon cancer cells.

  80. Allsopp P, Possemiers S, Campbell D, Gill C, Rowland I. A comparison of the anticancer properties of isoxanthohumol and 8-prenylnaringenin using in vitro models of colon cancer. BioFactors. 2013;39(4):441–7.

    Article  CAS  PubMed  Google Scholar 

  81. Casarin E, Dall’Acqua S, Smejkal K, Slapetová T, Innocenti G, Carrara M. Molecular mechanisms of antiproliferative effects induced by Schisandra-derived dibenzocyclooctadiene lignans (+)-deoxyschisandrin and (-)-gomisin N in human tumour cell lines. Fitoterapia. 2014;98:241–7.

  82. Fini L, Hotchkiss E, Fogliano V, Graziani G, Romano M, De Vol EB, et al. Chemopreventive properties of pinoresinol-rich olive oil involve a selective activation of the ATM-p53 cascade in colon cancer cell lines. Carcinogenesis. 2008;29(1):139–46.

    Article  CAS  PubMed  Google Scholar 

  83. Saidu NE, Valente S, Bana E, Kirsch G, Bagrel D, Montenarh M. Coumarin polysulfides inhibit cell growth and induce apoptosis in HCT116 colon cancer cells. Bioorg Med Chem. 2012;20(4):1584–93.

    Article  CAS  PubMed  Google Scholar 

  84. •• Ni X, Shang FS, Wang TF, Wu DJ, Chen DG, Zhuang B. Ellagic acid induces apoptosis and autophagy in colon cancer through the AMPK/mTOR pathway. Tissue Cell. 2023;81: 102032. This in vitro study identifies ellagic acid as an autophagy inducer against colon cancer.

  85. Zhu ML, Zhang PM, Jiang M, Yu SW, Wang L. Myricetin induces apoptosis and autophagy by inhibiting PI3K/Akt/mTOR signalling in human colon cancer cells. BMC Complement Med Ther. 2020;20(1):209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tanabe H, Kuribayashi K, Tsuji N, Tanaka M, Kobayashi D, Watanabe N. Sesamin induces autophagy in colon cancer cells by reducing tyrosine phosphorylation of EphA1 and EphB2. Int J Oncol. 2011;39(1):33–40.

    CAS  PubMed  Google Scholar 

  87. • Yoo HS, Won SB, Kwon YH. Luteolin induces apoptosis and autophagy in HCT116 colon cancer cells via p53-dependent pathway. Nutr Cancer. 2022;74(2):677–86. A study demonstrating the potential apoptosis-inducing activity of luteolin on colon cancer cells.

  88. Lee YH, Yuk HJ, Park KH, Bae YS. Coumestrol induces senescence through protein kinase CKII inhibition-mediated reactive oxygen species production in human breast cancer and colon cancer cells. Food Chem. 2013;141(1):381–8.

    Article  CAS  PubMed  Google Scholar 

  89. Du Q, Liu S, Dong K, Cui X, Luo J, Geller DA. Downregulation of iNOS/NO promotes epithelial-mesenchymal transition and metastasis in colorectal cancer. Mol Cancer Res. 2023;21(2):102–14.

    Article  CAS  PubMed  Google Scholar 

  90. Wu R, Wang L, Yin R, Hudlikar R, Li S, Kuo HD, et al. Epigenetics/epigenomics and prevention by curcumin of early stages of inflammatory-driven colon cancer. Mol Carcinog. 2020;59(2):227–36.

    Article  CAS  PubMed  Google Scholar 

  91. Cruz-Correa M, Hylind LM, Marrero JH, Zahurak ML, Murray-Stewart T, Casero RA Jr, et al. Efficacy and safety of curcumin in treatment of intestinal adenomas in patients with familial adenomatous polyposis. Gastroenterology. 2018;155(3):668–73.

    Article  CAS  PubMed  Google Scholar 

  92. • Hassan HFH, Mansour AM, Salama SA, El-Sayed EM. The chemopreventive effect of thymol against dimethylhydrazine and/or high fat diet-induced colon cancer in rats: Relevance to NF-κB. Life Sci. 2021;274: 119335. Experimental evidence that thymol suppresses aberrant crypt foci formation.

  93. Wu X, Song M, Wang M, Zheng J, Gao Z, Xu F, et al. Chemopreventive effects of nobiletin and its colonic metabolites on colon carcinogenesis. Mol Nutr Food Res. 2015;59(12):2383–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shimizu S, Fujii G, Takahashi M, Nakanishi R, Komiya M, Shimura M, et al. Sesamol suppresses cyclooxygenase-2 transcriptional activity in colon cancer cells and modifies intestinal polyp development in Apc (Min/+) mice. J Clin Biochem Nutr. 2014;54(2):95–101.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Suh N, Paul S, Hao X, Simi B, Xiao H, Rimando AM, et al. Pterostilbene, an active constituent of blueberries, suppresses aberrant crypt foci formation in the azoxymethane-induced colon carcinogenesis model in rats. Clin Cancer Res. 2007;13(1):350–5.

    Article  CAS  PubMed  Google Scholar 

  96. Nakayama Y, Inoue Y, Minagawa N, Onitsuka K, Nagata J, Shibao K, et al. Chemopreventive effect of 4-[3,5-Bis(trimethylsilyl) benzamido] benzoic acid (TAC-101) on MNU-induced colon carcinogenesis in a rat model. Anticancer Res. 2009;29(6):2059–65.

    CAS  PubMed  Google Scholar 

  97. Muthu R, Selvaraj N, Vaiyapuri M. Anti-inflammatory and proapoptotic effects of umbelliferone in colon carcinogenesis. Hum Exp Toxicol. 2016;35(10):1041–54.

    Article  CAS  PubMed  Google Scholar 

  98. Sharma SH, Rajamanickam V, Nagarajan S. Antiproliferative effect of p-Coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem Biol Interact. 2018;291:16–28.

    Article  CAS  PubMed  Google Scholar 

  99. Lin R, Piao M, Song Y, Liu C. Quercetin suppresses AOM/DSS-induced colon carcinogenesis through its anti-inflammation effects in mice. J Immunol Res. 2020;2020:9242601.

    Article  PubMed  PubMed Central  Google Scholar 

  100. • Jin BR, Chung KS, Hwang S, Hwang SN, Rhee KJ, Lee M, et al. Rosmarinic acid represses colitis-associated colon cancer: a pivotal involvement of the TLR4-mediated NF-κB-STAT3 axis. Neoplasia. 2021;23(6):561–73. This study describes anti-cancer effects of rosmarinic acid on colitis-associated tumorigenesis.

  101. Qiao S, Lv C, Tao Y, Miao Y, Zhu Y, Zhang W, et al. Arctigenin disrupts NLRP3 inflammasome assembly in colonic macrophages via downregulating fatty acid oxidation to prevent colitis-associated cancer. Cancer Lett. 2020;491:162–79.

    Article  CAS  PubMed  Google Scholar 

  102. Farombi EO, Ajayi BO, Adedara IA. 6-Gingerol delays tumorigenesis in benzo[a]pyrene and dextran sulphate sodium-induced colorectal cancer in mice. Food Chem Toxicol. 2020;142: 111483.

    Article  CAS  PubMed  Google Scholar 

  103. Mariyappan P, Kalaiyarasu T, Manju V. Effect of eriodictyol on preneoplastic lesions, oxidative stress and bacterial enzymes in 1,2-dimethyl hydrazine-induced colon carcinogenesis. Toxicol Res (Camb). 2017;6(5):678–92.

    Article  CAS  PubMed  Google Scholar 

  104. Balaji C, Muthukumaran J, Nalini N. Chemopreventive effect of sinapic acid on 1,2-dimethylhydrazine-induced experimental rat colon carcinogenesis. Hum Exp Toxicol. 2014;33(12):1253–68.

    Article  CAS  PubMed  Google Scholar 

  105. Sharma SH, Suresh Kumar J, Madhavan S, Nagarajan S. Morin supplementation modulates PERK branch of UPR and mitigates 1,2-dimethylhydrazine-induced angiogenesis and oxidative stress in the colon of experimental rats. Toxicol Mech Methods. 2020;30(4):306–15.

    Article  CAS  PubMed  Google Scholar 

  106. Saiprasad G, Chitra P, Manikandan R, Sudhandiran G. Hesperidin alleviates oxidative stress and downregulates the expressions of proliferative and inflammatory markers in azoxymethane-induced experimental colon carcinogenesis in mice. Inflamm Res. 2013;62(4):425–40.

    Article  CAS  PubMed  Google Scholar 

  107. Kawabata K, Yamamoto T, Hara A, Shimizu M, Yamada Y, Matsunaga K, et al. Modifying effects of ferulic acid on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Lett. 2000;157(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  108. Cao Y, Lu K, Xia Y, Wang Y, Wang A, Zhao Y. Danshensu attenuated epithelial-mesenchymal transformation and chemoresistance of colon cancer cells induced by platelets. Front Biosci (Landmark Ed). 2022;27(5):160.

    Article  CAS  PubMed  Google Scholar 

  109. • Yang MH, Jung SH, Um JY, Kumar AP, Sethi G, Ahn KS. Daidzin targets epithelial-to-mesenchymal transition process by attenuating manganese superoxide dismutase expression and PI3K/Akt/mTOR activation in tumor cells. Life Sci. 2022;295: 120395. This is the first report of daidzin reversing epithelial-to-mesenchymal transition in colon carcinoma cells.

  110. Kaneko T, Tahara S, Takabayashi F. Inhibitory effect of natural coumarin compounds, esculetin and esculin, on oxidative DNA damage and formation of aberrant crypt foci and tumors induced by 1,2-dimethylhydrazine in rat colons. Biol Pharm Bull. 2007;30(11):2052–7.

    Article  CAS  PubMed  Google Scholar 

  111. • Bhattacharya R, Chatterjee R, Mandal AKA, Mukhopadhyay A, Basu S, Giri AK, et al. Theaflavin-containing black tea extract: a potential DNA methyltransferase inhibitor in human colon cancer cells and Ehrlich ascites carcinoma-induced solid tumors in mice. Nutr Cancer. 2021;73(11–12):2447–59. This study highlights the role of DNA methyltransferase in the chemoprevention effect of theaflavin on colon Cancer.

  112. Sastre-Serra J, Ahmiane Y, Roca P, Oliver J, Pons DG. Xanthohumol, a hop-derived prenylflavonoid present in beer, impairs mitochondrial functionality of SW620 colon cancer cells. Int J Food Sci Nutr. 2019;70(4):396–404.

    Article  CAS  PubMed  Google Scholar 

  113. Pan G, Zhang P, Chen A, Deng Y, Zhang Z, Lu H, et al. Aerobic glycolysis in colon cancer is repressed by naringin via the HIF1Α pathway. J Zhejiang Univ Sci B. 2023;24(3):221–31.

    Article  CAS  PubMed  Google Scholar 

  114. Li J, Lu Y, Wang D, Quan F, Chen X, Sun R, et al. Schisandrin B prevents ulcerative colitis and colitis-associated-cancer by activating focal adhesion kinase and influence on gut microbiota in an in vivo and in vitro model. Eur J Pharmacol. 2019;854:9–21.

    Article  CAS  PubMed  Google Scholar 

  115. Seetha A, Devaraj H, Sudhandiran G. Indomethacin and juglone inhibit inflammatory molecules to induce apoptosis in colon cancer cells. J Biochem Mol Toxicol. 2020;34(2): e22433.

    Article  CAS  PubMed  Google Scholar 

  116. • Wang Y, Zhou Y, Lin H, Chen H, Wang S. Paeoniflorin inhibits the proliferation and metastasis of ulcerative colitis-associated colon cancer by targeting EGFL7. J Oncol. 2022;2022:7498771. A study demonstrating the potential anti-metastasis effects of paeoniflorin on ulcerative colitis-associated colon cancer.

  117. Seyfi D, Behzad SB, Nabiuni M, Parivar K, Tahmaseb M, Amini E. Verbascoside Attenuates Rac-1 and HIF-1α signaling cascade in colorectal cancer cells. Anticancer Agents Med Chem. 2018;18(15):2149–55.

    Article  CAS  PubMed  Google Scholar 

  118. Park EJ, Park HJ, Chung HJ, Shin Y, Min HY, Hong JY, et al. Antimetastatic activity of pinosylvin, a natural stilbenoid, is associated with the suppression of matrix metalloproteinases. J Nutr Biochem. 2012;23(8):946–52.

    Article  CAS  PubMed  Google Scholar 

  119. Gong J, Zhou S, Yang S. Vanillic acid suppresses HIF-1α expression via inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK pathways in human colon cancer HCT116 cells. Int J Mol Sci. 2019;20(3):465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Revathi S, Hakkim FL, Kumar NR, Bakshi HA, Rashan L, Al-Buloshi M, et al. Induction of HT-29 colon cancer cells apoptosis by pyrogallol with growth inhibiting efficacy against drug-resistant Helicobacter pylori. Anticancer Agents Med Chem. 2018;18(13):1875–84.

    Article  CAS  PubMed  Google Scholar 

  121. Wang AL, Li Y, Zhao Q, Fan LQ. Formononetin inhibits colon carcinoma cell growth and invasion by microRNA 149 mediated EphB3 downregulation and inhibition of PI3K/AKT and STAT3 signaling pathways. Mol Med Rep. 2018;17(6):7721–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. • Xiong L, Guo W, Yang Y, Gao D, Wang J, Qu Y, et al. Tectoridin inhibits the progression of colon cancer through downregulating PKC/p38 MAPK pathway. Mol Cell Biochem. 2021;476(7):2729–38. In this article they describe the anti-tumor effects of tectoridin on colon cancer.

  123. Zhou F, Zhou H, Wang T, Mu Y, Wu B, Guo DL, et al. Epigallocatechin-3-gallate inhibits proliferation and migration of human colon cancer SW620 cells in vitro. Acta Pharmacol Sin. 2012;33(1):120–6.

    Article  CAS  PubMed  Google Scholar 

  124. Fan K, Li X, Cao Y, Qi H, Li L, Zhang Q, et al. Carvacrol inhibits proliferation and induces apoptosis in human colon cancer cells. Anticancer Drugs. 2015;26(8):813–23.

    Article  CAS  PubMed  Google Scholar 

  125. Soltanian S, Riahirad H, Pabarja A, Jafari E, Khandani BK. Effect of Cinnamic acid and FOLFOX in diminishing side population and downregulating cancer stem cell markers in colon cancer cell line HT-29. Daru. 2018;26(1):19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Deng XQ, Zhang HB, Wang GF, Xu D, Zhang WY, Wang QS, et al. Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer. Int J Pharm. 2019;570: 118644.

    Article  CAS  PubMed  Google Scholar 

  127. Puthli A, Tiwari R, Mishra KP. Biochanin A enhances the radiotoxicity in colon tumor cells in vitro. J Environ Pathol Toxicol Oncol. 2013;32(3):189–203.

    Article  CAS  PubMed  Google Scholar 

  128. •• Wu H, Du J, Li C, Li H, Guo H, Li Z. Kaempferol can reverse the 5-Fu resistance of colorectal cancer cells by inhibiting PKM2-mediated glycolysis. Int J Mol Sci. 2022;23(7):3544. This study highlights an important role of kaempferol in overcoming the 5-Fluorouracil resistance of colorectal cancer cells.

  129. Guo P, Wang J, Gao W, Liu X, Wu S, Wan B, et al. Salvianolic acid B reverses multidrug resistance in nude mice bearing human colon cancer stem cells. Mol Med Rep. 2018;18(2):1323–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Jiang X, Li S, Qiu X, Cong J, Zhou J, Miu W. Curcumin inhibits cell viability and increases apoptosis of SW620 human colon adenocarcinoma cells via the caudal type homeobox-2 (CDX2)/Wnt/β-catenin pathway. Med Sci Monit. 2019;25:7451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Alam MN, Almoyad M, Huq F. Polyphenols in colorectal cancer: current state of knowledge including clinical trials and molecular mechanism of action. Biomed Res Int. 2018;2018:4154185.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Jedrychowski W, Maugeri U, Popiela T, Kulig J, Sochacka-Tatara E, Pac A, et al. Case-control study on beneficial effect of regular consumption of apples on colorectal cancer risk in a population with relatively low intake of fruits and vegetables. Eur J Cancer Prev. 2010;19(1):42–7.

    Article  CAS  PubMed  Google Scholar 

  133. Cladis DP, Weaver CM, Ferruzzi MG. (Poly)phenol toxicity in vivo following oral administration: a targeted narrative review of (poly)phenols from green tea, grape, and anthocyanin-rich extracts. Phytother Res. 2022;36(1):323–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Patrick I Okolo Iii critically revisedthe manuscript and provided feedback. Chengu Niu and Jing Zhang reviewed the literature and drafted the manuscript;Chengu Niu generated the figure artwork. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chengu Niu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, C., Zhang, J. & Okolo, P. Greasing the Wheels of Pharmacotherapy for Colorectal Cancer: the Role of Natural Polyphenols. Curr Nutr Rep 12, 662–678 (2023). https://doi.org/10.1007/s13668-023-00512-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-023-00512-w

Keywords

Navigation