Skip to main content

Advertisement

Log in

Therapeutic Potential of GLP-2 Analogs in Gastrointestinal Disorders: Current Knowledge, Nutritional Aspects, and Future Perspectives

  • Diabetes and Obesity (M Dalamaga and F Magkos, Section Editors)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Although Glucagon-like peptide (GLP)-1 receptor agonists have been used for almost two decades in the treatment of diabetes mellitus type 2 and, lately, in obesity, recent years have seen an increasing interest in the pharmacological agonism of other proglucagon-derived peptides, including GLP-2. Herein, we aimed to review the available evidence on the effects of GLP-2 agonism from animal and clinical studies. Furthermore, we summarize the current clinical applications of GLP-2 agonists among patients with intestinal failure associated with short bowel syndrome (SBS-IF) as well as potential future expansion of their indications to other intestinal disorders.

Recent Findings

Evidence from preclinical studies has highlighted the cellular trophic and functional beneficial actions of GLP-2 on small intestinal and colonic mucosa. Subsequently, pharmacologic agonism of GLP-2 has gathered interest for the treatment of patients with conditions pertaining to the loss of intestinal anatomical and/or functional integrity to a degree requiring parenteral support, collectively referred to as intestinal failure. GLP-2 analogs positively influence nutrient absorption in animal models and humans, although continued therapy is likely needed for sustained effects. The degradation-resistant GLP-2-analog teduglutide has received approval for the treatment of SBS-IF, in which it may decisively reduce patient dependency on parenteral support and improve quality of life. Another two longer-acting analogs, glepaglutide and apraglutide, are currently undergoing phase III clinical trials.

Summary

The use of GLP-2 analogs is effective in the management of SBS-IF and may show promise in the treatment of other severe gastrointestinal disorders associated with loss of effective intestinal resorptive surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Anti-TNFα:

Anti-tumor necrosis factor-α

Anti-IL12 and anti-IL23:

Anti-interleukin-12 and anti-interleukin-23

c-AMP:

Cyclic adenosine monophosphate

CD:

Crohn’s disease

CDAI:

Crohn’s Disease Activity Index

DNA:

Deoxy-ribonucleic acid

DPP-4:

Dipeptidyl peptidase-4

EGF:

Epidermal growth factor

ESPEN:

European Society for Clinical Nutrition and Metabolism

GE:

Gastric emptying

GI:

Gastrointestinal

GLP-2:

Glucagon-like peptide-2

GLP-2R:

Glucagon-like peptide 2 receptor

GIP:

Glucose-dependent insulinotropic polypeptide

GRPP:

Glicentin-related pancreatic peptide

IBD:

Inflammatory bowel disease

IGF-1:

Insulin-like growth factor-1

IVS:

Intravenous supplementation

KGF:

Keratinocyte growth factor

nNOS:

Neuronal nitric oxide synthase

PC:

Pro-hormone convertase

PGDP:

Pro-glucagon-derived peptide

PKA:

Protein kinase A

PS:

Parenteral support

QoL:

Quality of life

SBS-IF:

Short bowel syndrome-intestinal failure

SC:

Subcutaneous

SGLT-1:

Sodium-glucose transporter-1

T2DM:

Diabetes mellitus type 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Seige K. Glucagon, its discovery and description and the work of Max Burger. Z Gesamte Inn Med. 1986;41:568–71.

    CAS  Google Scholar 

  2. Bromer WW, Sinn LG, Staub A, Behrens OK. The amino acid sequence of glucagon. Diabetes. 1957;6:234–8. https://doi.org/10.2337/diab.6.3.234.

    Article  CAS  Google Scholar 

  3. Lafferty RA, O’Harte FPM, Irwin N, Gault VA, Flatt PR. Proglucagon-derived peptides as therapeutics. Front Endocrinol (Lausanne). 2021;12: 689678. https://doi.org/10.3389/fendo.2021.689678.

    Article  Google Scholar 

  4. Heine RJ, Van Gaal LF, Johns D, Mihm MJ, Widel MH, Brodows RG, et al. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med. 2005;143:559–69. https://doi.org/10.7326/0003-4819-143-8-200510180-00006.

    Article  CAS  Google Scholar 

  5. Sjolund K, Sanden G, Hakanson R, Sundler F. Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology. 1983;85:1120–30.

    Article  CAS  Google Scholar 

  6. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–57. https://doi.org/10.1053/j.gastro.2007.03.054.

    Article  CAS  Google Scholar 

  7. Kuhre RE, Deacon CF, Holst JJ, Petersen N. What is an L-cell and how do we study the secretory mechanisms of the L-cell? Front Endocrinol (Lausanne). 2021;12: 694284. https://doi.org/10.3389/fendo.2021.694284.

    Article  Google Scholar 

  8. Billiauws L, Joly F. Emerging treatments for short bowel syndrome in adult patients. Expert Rev Gastroenterol Hepatol. 2019;13:241–6. https://doi.org/10.1080/17474124.2019.1569514.

    Article  CAS  Google Scholar 

  9. Austin K, Markovic MA, Brubaker PL. Current and potential therapeutic targets of glucagon-like peptide-2. Curr Opin Pharmacol. 2016;31:13–8. https://doi.org/10.1016/j.coph.2016.08.008.

    Article  CAS  Google Scholar 

  10. Berkowitz DE, Steenbergen C, O’Rourke B. Hibernating squirrels: SIRTin clues for organ protection after ischemia-reperfusion. Anesthesiology. 2016;124:1215–7. https://doi.org/10.1097/ALN.0000000000001114.

    Article  Google Scholar 

  11. Drucker DJ, Yusta B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu Rev Physiol. 2014;76:561–83. https://doi.org/10.1146/annurev-physiol-021113-170317.

    Article  CAS  Google Scholar 

  12. Rowland KJ, Brubaker PL. The “cryptic” mechanism of action of glucagon-like peptide-2. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1-8. https://doi.org/10.1152/ajpgi.00039.2011.

    Article  CAS  Google Scholar 

  13. Yusta B, Holland D, Koehler JA, Maziarz M, Estall JL, Higgins R, et al. ErbB signaling is required for the proliferative actions of GLP-2 in the murine gut. Gastroenterology. 2009;137:986–96. https://doi.org/10.1053/j.gastro.2009.05.057.

    Article  CAS  Google Scholar 

  14. Austin K, Imam NA, Pintar JE, Brubaker PL. IGF binding protein-4 is required for the growth effects of glucagon-like peptide-2 in murine intestine. Endocrinology. 2015;156:429–36. https://doi.org/10.1210/en.2014-1829.

    Article  CAS  Google Scholar 

  15. Van Landeghem L, Santoro MA, Mah AT, Krebs AE, Dehmer JJ, McNaughton KK, et al. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations. FASEB J. 2015;29:2828–42. https://doi.org/10.1096/fj.14-264010.

    Article  CAS  Google Scholar 

  16. Iturrino J, Camilleri M, Acosta A, O’Neill J, Burton D, Edakkanambeth Varayil J, et al. Acute effects of a glucagon-like peptide 2 analogue, teduglutide, on gastrointestinal motor function and permeability in adult patients with short bowel syndrome on home parenteral nutrition. JPEN J Parenter Enteral Nutr. 2016;40:1089–95. https://doi.org/10.1177/0148607115597644.

    Article  CAS  Google Scholar 

  17. Bremholm L, Hornum M, Andersen UB, Hartmann B, Holst JJ, Jeppesen PB. The effect of glucagon-like peptide-2 on mesenteric blood flow and cardiac parameters in end-jejunostomy short bowel patients. Regul Pept. 2011;168:32–8. https://doi.org/10.1016/j.regpep.2011.03.003.

    Article  CAS  Google Scholar 

  18. Berg JK, Kim EH, Li B, Joelsson B, Youssef NN. A randomized, double-blind, placebo-controlled, multiple-dose, parallel-group clinical trial to assess the effects of teduglutide on gastric emptying of liquids in healthy subjects. BMC Gastroenterol. 2014;14:25. https://doi.org/10.1186/1471-230X-14-25.

    Article  CAS  Google Scholar 

  19. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–103. https://doi.org/10.1136/gut.2008.165886.

    Article  CAS  Google Scholar 

  20. Dong CX, Zhao W, Solomon C, Rowland KJ, Ackerley C, Robine S, et al. The intestinal epithelial insulin-like growth factor-1 receptor links glucagon-like peptide-2 action to gut barrier function. Endocrinology. 2014;155:370–9. https://doi.org/10.1210/en.2013-1871.

    Article  CAS  Google Scholar 

  21. Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Prog Biophys Mol Biol. 2003;81:1–44. https://doi.org/10.1016/s0079-6107(02)00037-8.

    Article  CAS  Google Scholar 

  22. Hartmann B, Harr MB, Jeppesen PB, Wojdemann M, Deacon CF, Mortensen PB, et al. In vivo and in vitro degradation of glucagon-like peptide-2 in humans. J Clin Endocrinol Metab. 2000;85:2884–8. https://doi.org/10.1210/jcem.85.8.6717.

    Article  CAS  Google Scholar 

  23. Drucker DJ, Shi Q, Crivici A, Sumner-Smith M, Tavares W, Hill M, et al. Regulation of the biological activity of glucagon-like peptide 2 in vivo by dipeptidyl peptidase IV. Nat Biotechnol. 1997;15:673–7. https://doi.org/10.1038/nbt0797-673.

    Article  CAS  Google Scholar 

  24. Ferrone M, Scolapio JS. Teduglutide for the treatment of short bowel syndrome. Ann Pharmacother. 2006;40:1105–9. https://doi.org/10.1345/aph.1G419.

    Article  CAS  Google Scholar 

  25. Naimi RM, Hvistendahl M, Enevoldsen LH, Madsen JL, Fuglsang S, Poulsen SS, et al. Glepaglutide, a novel long-acting glucagon-like peptide-2 analogue, for patients with short bowel syndrome: a randomised phase 2 trial. Lancet Gastroenterol Hepatol. 2019;4:354–63. https://doi.org/10.1016/S2468-1253(19)30077-9.

    Article  Google Scholar 

  26. Eliasson J, Hvistendahl MK, Freund N, Bolognani F, Meyer C, Jeppesen PB. Apraglutide, a novel glucagon-like peptide-2 analog, improves fluid absorption in patients with short bowel syndrome intestinal failure: findings from a placebo-controlled, randomized phase 2 trial. JPEN J Parenter Enteral Nutr. 2021. https://doi.org/10.1002/jpen.2223.

    Article  Google Scholar 

  27. Kocoshis SA, Merritt RJ, Hill S, Protheroe S, Carter BA, Horslen S, et al. Safety and efficacy of teduglutide in pediatric patients with intestinal failure due to short bowel syndrome: a 24-week, phase III study. JPEN J Parenter Enteral Nutr. 2020;44:621–31. https://doi.org/10.1002/jpen.1690.

    Article  CAS  Google Scholar 

  28. Hvistendahl MK, Naimi RM, Enevoldsen LH, Madsen JL, Fuglsang S, Jeppesen PB. Effect of glepaglutide, a long-acting glucagon-like peptide-2 analog, on gastrointestinal transit time and motility in patients with short bowel syndrome: findings from a randomized trial. JPEN J Parenter Enteral Nutr. 2020;44:1535–44. https://doi.org/10.1002/jpen.1767.

    Article  CAS  Google Scholar 

  29. Hargrove DM, Alagarsamy S, Croston G, Laporte R, Qi S, Srinivasan K, et al. Pharmacological characterization of apraglutide, a novel long-acting peptidic glucagon-like peptide-2 agonist, for the treatment of short bowel syndrome. J Pharmacol Exp Ther. 2020;373:193–203. https://doi.org/10.1124/jpet.119.262238.

    Article  CAS  Google Scholar 

  30. Cheeseman CI, Tsang R. The effect of GIP and glucagon-like peptides on intestinal basolateral membrane hexose transport. Am J Physiol. 1996;271:G477–82. https://doi.org/10.1152/ajpgi.1996.271.3.G477.

    Article  CAS  Google Scholar 

  31. Brubaker PL. Glucagon-like peptide-2 and the regulation of intestinal growth and function. Compr Physiol. 2018;8:1185–210. https://doi.org/10.1002/cphy.c170055.

    Article  Google Scholar 

  32. Dahly EM, Gillingham MB, Guo Z, Murali SG, Nelson DW, Holst JJ, et al. Role of luminal nutrients and endogenous GLP-2 in intestinal adaptation to mid-small bowel resection. Am J Physiol Gastrointest Liver Physiol. 2003;284:G670–82. https://doi.org/10.1152/ajpgi.00293.2002.

    Article  CAS  Google Scholar 

  33. Dash S, Xiao C, Morgantini C, Connelly PW, Patterson BW, Lewis GF. Glucagon-like peptide-2 regulates release of chylomicrons from the intestine. Gastroenterology. 2014;147:1275–84 e4. https://doi.org/10.1053/j.gastro.2014.08.037.

  34. Schwartz LK, O’Keefe SJ, Fujioka K, Gabe SM, Lamprecht G, Pape UF, et al. Long-term teduglutide for the treatment of patients with intestinal failure associated with short bowel syndrome. Clin Transl Gastroenterol. 2016;7: e142. https://doi.org/10.1038/ctg.2015.69.

    Article  CAS  Google Scholar 

  35. Lee SJ, Lee J, Li KK, Holland D, Maughan H, Guttman DS, et al. Disruption of the murine Glp2r impairs Paneth cell function and increases susceptibility to small bowel enteritis. Endocrinology. 2012;153:1141–51. https://doi.org/10.1210/en.2011-1954.

    Article  CAS  Google Scholar 

  36. Benjamin MA, McKay DM, Yang PC, Cameron H, Perdue MH. Glucagon-like peptide-2 enhances intestinal epithelial barrier function of both transcellular and paracellular pathways in the mouse. Gut. 2000;47:112–9. https://doi.org/10.1136/gut.47.1.112.

    Article  CAS  Google Scholar 

  37. Sigalet DL, de Heuvel E, Wallace L, Bulloch E, Turner J, Wales PW, et al. Effects of chronic glucagon-like peptide-2 therapy during weaning in neonatal pigs. Regul Pept. 2014;188:70–80. https://doi.org/10.1016/j.regpep.2013.12.006.

    Article  CAS  Google Scholar 

  38. Zaczek Z, Jurczak-Kobus P, Panczyk M, Braszczynska-Sochacka J, Majewska K, Kunecki M, et al. Changes in parenteral nutrition requirements and BMI in patients with parenteral nutrition-dependent short bowel syndrome after stopping teduglutide-9 years of follow-up. Nutrients. 2022;14. https://doi.org/10.3390/nu14081634.

  39. Pironi L, Arends J, Baxter J, Bozzetti F, Pelaez RB, Cuerda C, et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin Nutr. 2015;34:171–80. https://doi.org/10.1016/j.clnu.2014.08.017.

  40. Billiauws L, Corcos O, Joly F. What’s new in short bowel syndrome? Curr Opin Clin Nutr Metab Care. 2018;21:313–8. https://doi.org/10.1097/MCO.0000000000000473.

    Article  Google Scholar 

  41. Goulet O, Abi Nader E, Pigneur B, Lambe C. Short bowel syndrome as the leading cause of intestinal failure in early life: some insights into the management. Pediatr Gastroenterol Hepatol Nutr. 2019;22:303–29. https://doi.org/10.5223/pghn.2019.22.4.303.

    Article  Google Scholar 

  42. Lim DW, Levesque CL, Vine DF, Muto M, Koepke JR, Nation PN, et al. Synergy of glucagon-like peptide-2 and epidermal growth factor coadministration on intestinal adaptation in neonatal piglets with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2017;312:G390–404. https://doi.org/10.1152/ajpgi.00281.2016.

    Article  Google Scholar 

  43. Rowland KJ, Trivedi S, Lee D, Wan K, Kulkarni RN, Holzenberger M, et al. Loss of glucagon-like peptide-2-induced proliferation following intestinal epithelial insulin-like growth factor-1-receptor deletion. Gastroenterology. 2011;141:2166–75 e7. https://doi.org/10.1053/j.gastro.2011.09.014.

  44. Burrin DG, Stoll B, Guan X, Cui L, Chang X, Hadsell D. GLP-2 rapidly activates divergent intracellular signaling pathways involved in intestinal cell survival and proliferation in neonatal piglets. Am J Physiol Endocrinol Metab. 2007;292:E281–91. https://doi.org/10.1152/ajpendo.00129.2006.

    Article  CAS  Google Scholar 

  45. Jeppesen PB, Gilroy R, Pertkiewicz M, Allard JP, Messing B, O’Keefe SJ. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut. 2011;60:902–14. https://doi.org/10.1136/gut.2010.218271.

    Article  CAS  Google Scholar 

  46. Reiner J, Berlin P, Wobar J, Schaffler H, Bannert K, Bastian M, et al. Teduglutide promotes epithelial tight junction pore function in murine short bowel syndrome to alleviate intestinal insufficiency. Dig Dis Sci. 2020;65:3521–37. https://doi.org/10.1007/s10620-020-06140-6.

    Article  CAS  Google Scholar 

  47. Pauline ML, Nation PN, Wizzard PR, Hinchliffe T, Wu T, Dimitriadou V, et al. Comparing the intestinotrophic effects of 2 glucagon-like peptide-2 analogues in the treatment of short-bowel syndrome in neonatal piglets. JPEN J Parenter Enteral Nutr. 2021;45:538–45. https://doi.org/10.1002/jpen.1853.

    Article  CAS  Google Scholar 

  48. Slim GM, Lansing M, Wizzard P, Nation PN, Wheeler SE, Brubaker PL, et al. Novel long-acting GLP-2 analogue, FE 203799 (apraglutide), enhances adaptation and linear intestinal growth in a neonatal piglet model of short bowel syndrome with total resection of the ileum. JPEN J Parenter Enteral Nutr. 2019;43:891–8. https://doi.org/10.1002/jpen.1500.

    Article  CAS  Google Scholar 

  49. Suri M, Turner JM, Sigalet DL, Wizzard PR, Nation PN, Ball RO, et al. Exogenous glucagon-like peptide-2 improves outcomes of intestinal adaptation in a distal-intestinal resection neonatal piglet model of short bowel syndrome. Pediatr Res. 2014;76:370–7. https://doi.org/10.1038/pr.2014.97.

    Article  CAS  Google Scholar 

  50. Burness CB, McCormack PL. Teduglutide: a review of its use in the treatment of patients with short bowel syndrome. Drugs. 2013;73:935–47. https://doi.org/10.1007/s40265-013-0070-y.

    Article  CAS  Google Scholar 

  51. •• Rosete BE, Wendel D, Horslen SP. Teduglutide for pediatric short bowel syndrome patients. Expert Rev Gastroenterol Hepatol. 2021;15:727–33. https://doi.org/10.1080/17474124.2021.1913052. Expert review regarding the usefulness of teduglytide for short bowel syndrome in pediatric patients.

  52. Seidner DL, Gabe SM, Lee HM, Olivier C, Jeppesen PB. Enteral autonomy and days off parenteral support with teduglutide treatment for short bowel syndrome in the STEPS trials. JPEN J Parenter Enteral Nutr. 2020;44:697–702. https://doi.org/10.1002/jpen.1687.

    Article  CAS  Google Scholar 

  53. Chen K, Mu F, Xie J, Kelkar SS, Olivier C, Signorovitch J, et al. Impact of teduglutide on quality of life among patients with short bowel syndrome and intestinal failure. JPEN J Parenter Enteral Nutr. 2020;44:119–28. https://doi.org/10.1002/jpen.1588.

    Article  CAS  Google Scholar 

  54. Pape UF, Iyer KR, Jeppesen PB, Kunecki M, Pironi L, Schneider SM, et al. Teduglutide for the treatment of adults with intestinal failure associated with short bowel syndrome: pooled safety data from four clinical trials. Therap Adv Gastroenterol. 2020;13:1756284820905766. https://doi.org/10.1177/1756284820905766.

    Article  CAS  Google Scholar 

  55. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–29. https://doi.org/10.1056/NEJMra020831.

    Article  CAS  Google Scholar 

  56. Buhner S, Buning C, Genschel J, Kling K, Herrmann D, Dignass A, et al. Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut. 2006;55:342–7. https://doi.org/10.1136/gut.2005.065557.

    Article  CAS  Google Scholar 

  57. D’Haens G, Baert F, van Assche G, Caenepeel P, Vergauwe P, Tuynman H, et al. Early combined immunosuppression or conventional management in patients with newly diagnosed Crohn’s disease: an open randomised trial. Lancet. 2008;371:660–7. https://doi.org/10.1016/S0140-6736(08)60304-9.

    Article  CAS  Google Scholar 

  58. Blonski W, Buchner AM, Aberra F, Lichtenstein G. Teduglutide in Crohn’s disease. Expert Opin Biol Ther. 2013;13:1207–14. https://doi.org/10.1517/14712598.2013.815721.

    Article  CAS  Google Scholar 

  59. Feagan BG, Sandborn WJ, Gasink C, Jacobstein D, Lang Y, Friedman JR, et al. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2016;375:1946–60. https://doi.org/10.1056/NEJMoa1602773.

    Article  CAS  Google Scholar 

  60. Sandborn WJ, Feagan BG, Rutgeerts P, Hanauer S, Colombel JF, Sands BE, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369:711–21. https://doi.org/10.1056/NEJMoa1215739.

    Article  CAS  Google Scholar 

  61. Fragkos KC, Forbes A. Citrulline as a marker of intestinal function and absorption in clinical settings: a systematic review and meta-analysis. United European Gastroenterol J. 2018;6:181–91. https://doi.org/10.1177/2050640617737632.

    Article  CAS  Google Scholar 

  62. • Buchman AL, Katz S, Fang JC, Bernstein CN, Abou-Assi SG, Teduglutide Study G. Teduglutide, a novel mucosally active analog of glucagon-like peptide-2 (GLP-2) for the treatment of moderate to severe Crohn’s disease. Inflamm Bowel Dis. 2010;16:962–73. https://doi.org/10.1002/ibd.21117. This is the first manuscript regarding the therapeutic potential of GLP-2 analogs among patients with severe Crohn’s disease.

  63. Tavakkolizadeh A, Shen R, Abraham P, Kormi N, Seifert P, Edelman ER, et al. Glucagon-like peptide 2: a new treatment for chemotherapy-induced enteritis. J Surg Res. 2000;91:77–82. https://doi.org/10.1006/jsre.2000.5917.

    Article  CAS  Google Scholar 

  64. Pini A, Garella R, Idrizaj E, Calosi L, Baccari MC, Vannucchi MG. Glucagon-like peptide 2 counteracts the mucosal damage and the neuropathy induced by chronic treatment with cisplatin in the mouse gastric fundus. Neurogastroenterol Motil. 2016;28:206–16. https://doi.org/10.1111/nmo.12712.

    Article  CAS  Google Scholar 

  65. •• Nardini P, Pini A, Bessard A, Duchalais E, Niccolai E, Neunlist M, et al. GLP-2 prevents neuronal and glial changes in the distal colon of mice chronically treated with cisplatin. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21228875. This report highlights the therapeutic potential of GLP-2 analogs in a rodent model of chemotherapy-induced gastrointestinal damage.

  66. Zhang T, Shi L, Xu Y, Li Y, Li S, Guan B, et al. Purified PEGylated human glucagon-like peptide-2 reduces the severity of irradiation-induced acute radiation enteritis in rats. J Radiat Res. 2019;60:7–16. https://doi.org/10.1093/jrr/rry076.

    Article  CAS  Google Scholar 

  67. Torres S, Thim L, Milliat F, Vozenin-Brotons MC, Olsen UB, Ahnfelt-Ronne I, et al. Glucagon-like peptide-2 improves both acute and late experimental radiation enteritis in the rat. Int J Radiat Oncol Biol Phys. 2007;69:1563–71. https://doi.org/10.1016/j.ijrobp.2007.08.051.

    Article  CAS  Google Scholar 

  68. Tack J, Arts J, Caenepeel P, De Wulf D, Bisschops R. Pathophysiology, diagnosis and management of postoperative dumping syndrome. Nat Rev Gastroenterol Hepatol. 2009;6:583–90. https://doi.org/10.1038/nrgastro.2009.148.

    Article  Google Scholar 

  69. Wauters L, Vanuytsel T. Applications of peptide hormone ligands for the treatment of dumping and short bowel syndrome. Curr Opin Pharmacol. 2018;43:118–23. https://doi.org/10.1016/j.coph.2018.09.005.

    Article  CAS  Google Scholar 

  70. Scarpellini E, Arts J, Karamanolis G, Laurenius A, Siquini W, Suzuki H, et al. International consensus on the diagnosis and management of dumping syndrome. Nat Rev Endocrinol. 2020;16:448–66. https://doi.org/10.1038/s41574-020-0357-5.

    Article  Google Scholar 

  71. van Furth AM, de Heide LJM, Emous M, Veeger N, van Beek AP. Dumping syndrome and postbariatric hypoglycemia: supporting evidence for a common etiology. Surg Obes Relat Dis. 2021;17:1912–8. https://doi.org/10.1016/j.soard.2021.05.020.

    Article  Google Scholar 

  72. Abrahamsson N, Engstrom BE, Sundbom M, Karlsson FA. GLP1 analogs as treatment of postprandial hypoglycemia following gastric bypass surgery: a potential new indication? Eur J Endocrinol. 2013;169:885–9. https://doi.org/10.1530/EJE-13-0504.

    Article  CAS  Google Scholar 

  73. Ding B, Hu Y, Yuan L, Yan RN, Ma JH. Effectiveness of beinaglutide in a patient with late dumping syndrome after gastrectomy: a case report. Medicine (Baltimore). 2021;100: e26086. https://doi.org/10.1097/MD.0000000000026086.

    Article  Google Scholar 

  74. Marier JF, Beliveau M, Mouksassi MS, Shaw P, Cyran J, Kesavan J, et al. Pharmacokinetics, safety, and tolerability of teduglutide, a glucagon-like peptide-2 (GLP-2) analog, following multiple ascending subcutaneous administrations in healthy subjects. J Clin Pharmacol. 2008;48:1289–99. https://doi.org/10.1177/0091270008320605.

    Article  CAS  Google Scholar 

  75. Jeppesen PB, Gabe SM, Seidner DL, Lee HM, Olivier C. Factors associated with response to teduglutide in patients with short-bowel syndrome and intestinal failure. Gastroenterology. 2018;154:874–85. https://doi.org/10.1053/j.gastro.2017.11.023.

    Article  CAS  Google Scholar 

  76. Jeppesen PB, Pertkiewicz M, Messing B, Iyer K, Seidner DL, O'Keefe S J, et al. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology. 2012;143:1473–81 e3. https://doi.org/10.1053/j.gastro.2012.09.007.

  77. Hill S, Carter BA, Cohran V, Horslen S, Kaufman SS, Kocoshis SA, et al. Safety findings in pediatric patients during long-term treatment with teduglutide for short-bowel syndrome-associated intestinal failure: pooled analysis of 4 clinical studies. JPEN J Parenter Enteral Nutr. 2021;45:1456–65. https://doi.org/10.1002/jpen.2061.

    Article  CAS  Google Scholar 

  78. Billiauws L, Bataille J, Boehm V, Corcos O, Joly F. Teduglutide for treatment of adult patients with short bowel syndrome. Expert Opin Biol Ther. 2017;17:623–32. https://doi.org/10.1080/14712598.2017.1304912.

    Article  CAS  Google Scholar 

  79. Carroll RE, Benedetti E, Schowalter JP, Buchman AL. Management and complications of short bowel syndrome: an updated review. Curr Gastroenterol Rep. 2016;18:40. https://doi.org/10.1007/s11894-016-0511-3.

    Article  Google Scholar 

  80. Jeppesen PB. The novel use of peptide analogs in short bowel syndrome. Expert Rev Gastroenterol Hepatol. 2013;7:197–9. https://doi.org/10.1586/egh.13.2.

    Article  CAS  Google Scholar 

  81. Jeppesen PB, Pertkiewicz M, Forbes A, Pironi L, Gabe SM, Joly F, et al. Quality of life in patients with short bowel syndrome treated with the new glucagon-like peptide-2 analogue teduglutide–analyses from a randomised, placebo-controlled study. Clin Nutr. 2013;32:713–21. https://doi.org/10.1016/j.clnu.2013.03.016.

    Article  CAS  Google Scholar 

  82. Bortvedt SF, Lund PK. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors. Curr Opin Gastroenterol. 2012;28:89–98. https://doi.org/10.1097/MOG.0b013e32835004c6.

    Article  CAS  Google Scholar 

  83. Tsai CH, Hill M, Drucker DJ. Biological determinants of intestinotrophic properties of GLP-2 in vivo. Am J Physiol. 1997;272:G662–8. https://doi.org/10.1152/ajpgi.1997.272.3.G662.

    Article  CAS  Google Scholar 

  84. Brubaker PL, Izzo A, Hill M, Drucker DJ. Intestinal function in mice with small bowel growth induced by glucagon-like peptide-2. Am J Physiol. 1997;272:E1050–8. https://doi.org/10.1152/ajpendo.1997.272.6.E1050.

    Article  CAS  Google Scholar 

  85. Litvak DA, Hellmich MR, Evers BM, Banker NA, Townsend CM Jr. Glucagon-like peptide 2 is a potent growth factor for small intestine and colon. J Gastrointest Surg. 1998;2:146–50. https://doi.org/10.1016/s1091-255x(98)80005-x.

    Article  CAS  Google Scholar 

  86. Scott RB, Kirk D, MacNaughton WK, Meddings JB. GLP-2 augments the adaptive response to massive intestinal resection in rat. Am J Physiol. 1998;275:G911–21. https://doi.org/10.1152/ajpgi.1998.275.5.G911.

    Article  CAS  Google Scholar 

  87. Burrin DG, Stoll B, Jiang R, Petersen Y, Elnif J, Buddington RK, et al. GLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis. Am J Physiol Gastrointest Liver Physiol. 2000;279:G1249–56. https://doi.org/10.1152/ajpgi.2000.279.6.G1249.

    Article  CAS  Google Scholar 

  88. Guan X, Stoll B, Lu X, Tappenden KA, Holst JJ, Hartmann B, et al. GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets 1. Gastroenterology. 2003;125:136–47. https://doi.org/10.1016/s0016-5085(03)00667-x.

    Article  CAS  Google Scholar 

  89. Martin GR, Wallace LE, Sigalet DL. Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2004;286:G964–72. https://doi.org/10.1152/ajpgi.00509.2003.

    Article  CAS  Google Scholar 

  90. Washizawa N, Gu LH, Gu L, Openo KP, Jones DP, Ziegler TR. Comparative effects of glucagon-like peptide-2 (GLP-2), growth hormone (GH), and keratinocyte growth factor (KGF) on markers of gut adaptation after massive small bowel resection in rats. JPEN J Parenter Enteral Nutr. 2004;28:399–409. https://doi.org/10.1177/0148607104028006399.

    Article  CAS  Google Scholar 

  91. Burrin DG, Stoll B, Guan X, Cui L, Chang X, Holst JJ. Glucagon-like peptide 2 dose-dependently activates intestinal cell survival and proliferation in neonatal piglets. Endocrinology. 2005;146:22–32. https://doi.org/10.1210/en.2004-1119.

    Article  CAS  Google Scholar 

  92. Cottrell JJ, Stoll B, Buddington RK, Stephens JE, Cui L, Chang X, et al. Glucagon-like peptide-2 protects against TPN-induced intestinal hexose malabsorption in enterally refed piglets. Am J Physiol Gastrointest Liver Physiol. 2006;290:G293-300. https://doi.org/10.1152/ajpgi.00275.2005.

    Article  CAS  Google Scholar 

  93. Sigalet DL, Bawazir O, Martin GR, Wallace LE, Zaharko G, Miller A, et al. Glucagon-like peptide-2 induces a specific pattern of adaptation in remnant jejunum. Dig Dis Sci. 2006;51:1557–66. https://doi.org/10.1007/s10620-006-9077-5.

    Article  CAS  Google Scholar 

  94. Vegge A, Thymann T, Lund P, Stoll B, Bering SB, Hartmann B, et al. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates. Am J Physiol Gastrointest Liver Physiol. 2013;305:G277–85. https://doi.org/10.1152/ajpgi.00064.2013.

    Article  CAS  Google Scholar 

  95. Jeppesen PB, Sanguinetti EL, Buchman A, Howard L, Scolapio JS, Ziegler TR, et al. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut. 2005;54:1224–31. https://doi.org/10.1136/gut.2004.061440.

    Article  CAS  Google Scholar 

  96. O’Keefe SJ, Jeppesen PB, Gilroy R, Pertkiewicz M, Allard JP, Messing B. Safety and efficacy of teduglutide after 52 weeks of treatment in patients with short bowel intestinal failure. Clin Gastroenterol Hepatol. 2013;11(815–23):e1-3. https://doi.org/10.1016/j.cgh.2012.12.029.

    Article  CAS  Google Scholar 

  97. Tappenden KA, Edelman J, Joelsson B. Teduglutide enhances structural adaptation of the small intestinal mucosa in patients with short bowel syndrome. J Clin Gastroenterol. 2013;47:602–7. https://doi.org/10.1097/MCG.0b013e3182828f57.

    Article  CAS  Google Scholar 

  98. Carter BA, Cohran VC, Cole CR, Corkins MR, Dimmitt RA, Duggan C, et al. Outcomes from a 12-week, open-label, multicenter clinical trial of teduglutide in pediatric short bowel syndrome. J Pediatr. 2017;181:102–11 e5. https://doi.org/10.1016/j.jpeds.2016.10.027.

  99. Naimi RM, Hvistendahl M, Nerup N, Ambrus R, Achiam MP, Svendsen LB, et al. Effects of glepaglutide, a novel long-acting glucagon-like peptide-2 analogue, on markers of liver status in patients with short bowel syndrome: findings from a randomised phase 2 trial. EBioMedicine. 2019;46:444–51. https://doi.org/10.1016/j.ebiom.2019.07.016.

    Article  Google Scholar 

  100. Joly F, Seguy D, Nuzzo A, Chambrier C, Beau P, Poullenot F, et al. Six-month outcomes of teduglutide treatment in adult patients with short bowel syndrome with chronic intestinal failure: a real-world French observational cohort study. Clin Nutr. 2020;39:2856–62. https://doi.org/10.1016/j.clnu.2019.12.019.

    Article  CAS  Google Scholar 

  101. Jeppesen PB, Gabe SM, Seidner DL, Lee HM, Olivier C. Citrulline correlations in short bowel syndrome-intestinal failure by patient stratification: analysis of 24 weeks of teduglutide treatment from a randomized controlled study. Clin Nutr. 2020;39:2479–86. https://doi.org/10.1016/j.clnu.2019.11.001.

    Article  CAS  Google Scholar 

  102. Ramos Boluda E, Redecillas Ferreiro S, Manrique Moral O, Garcia Romero R, Irastorza Terradillos I, Nunez Ramos R, et al. Experience with teduglutide in pediatric short bowel syndrome: first real-life data. J Pediatr Gastroenterol Nutr. 2020;71:734–9. https://doi.org/10.1097/MPG.0000000000002899.

    Article  Google Scholar 

  103. Hvistendahl MK, Naimi RM, Hansen SH, Rehfeld JF, Kissow H, Pedersen J, et al. Bile acid-farnesoid X receptor-fibroblast growth factor 19 axis in patients with short bowel syndrome: the randomized, glepaglutide phase 2 trial. JPEN J Parenter Enteral Nutr. 2021. https://doi.org/10.1002/jpen.2224.

    Article  Google Scholar 

  104. Solar H, Doeyo M, Ortega M, De Barrio S, Olano E, Moreira E, et al. Postsurgical intestinal rehabilitation using semisynthetic glucagon-like peptide-2 analogue (sGLP-2) at a referral center: can patients achieve parenteral nutrition and sGLP-2 independency? JPEN J Parenter Enteral Nutr. 2021;45:1072–82. https://doi.org/10.1002/jpen.1983.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors meet authorship criteria. N.G. Vallianou and M. Dalamaga developed the concept of the manuscript. Literature research was carried out by D. Kounatidis, N.G. Vallianou, and D. Tsilingiris. D. Kounatidis, N.G. Vallianou, D. Tsilingiris, G.S. Christodoulatos, and T. Stratigou wrote the draft. Artwork was prepared by G.S. Christodoulatos. E. Geladari, I. Karampela, and M. Dalamaga edited and reviewed the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Natalia G. Vallianou or Maria Dalamaga.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Diabetes and Obesity

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kounatidis, D., Vallianou, N.G., Tsilingiris, D. et al. Therapeutic Potential of GLP-2 Analogs in Gastrointestinal Disorders: Current Knowledge, Nutritional Aspects, and Future Perspectives. Curr Nutr Rep 11, 618–642 (2022). https://doi.org/10.1007/s13668-022-00433-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-022-00433-0

Keywords

Navigation