Skip to main content

Advertisement

Log in

Vitamin D3 from Ultraviolet-B Exposure or Oral Intake in Relation to Cancer Incidence and Mortality

  • Cancer (MF Leitzmann, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes the understanding of vitamin D3’s role in reducing risk of cancer incidence and mortality.

Recent Findings

Recent randomized clinical trials and observational studies of participants who took part in vitamin D3 supplementation studies provide increasing evidence that concentrations of serum 25-hydroxyvitamin D3 [25(OH)D3] up to ~ 60 ng/ml are inversely correlated with all cancer and some specific cancers’ incidence and death, with a stronger effect on survival and death than on incidence. Mechanisms linking vitamin D3 to effects on cellular proliferation, anti-angiogenesis, and anti-metastasis continue to be found.

Summary

Vitamin D3 reduces cancer risk causally. Maintaining 25(OH)D3 in the range of 40–60 ng/ml reduces the risk of many cancers. Raising 25(OH)D3 concentrations after diagnosis to that range increases survival rates and could significantly reduce the global burden of cancer incidence and death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Garland CF, Garland FC. Do sunlight and vitamin D reduce the likelihood of colon cancer? Int J Epidemiol. 1980;9(3):227–31.

    Article  CAS  PubMed  Google Scholar 

  2. Moukayed M, Grant WB. Molecular link between vitamin D and cancer prevention. Nutrients. 2013;5(10):3993–4021. https://doi.org/10.3390/nu5103993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grant WB. Roles of solar UVB and vitamin D in reducing cancer risk and increasing survival. Anticancer Res. 2016;36(3):1357–70.

    CAS  PubMed  Google Scholar 

  4. Moukayed M, Grant WB. The roles of UVB and vitamin D in reducing risk of cancer incidence and mortality: a review of the epidemiology, clinical trials, and mechanisms. Rev Endocr Metab Disord. 2017;18:167–82. https://doi.org/10.1007/s11154-017-9415-2.

    Article  CAS  PubMed  Google Scholar 

  5. Grant WB. A review of the evidence supporting the vitamin D-cancer prevention hypothesis in 2017. Anticancer Res. 2018;38(2):1121–36. https://doi.org/10.21873/anticanres.12331.

    Article  CAS  PubMed  Google Scholar 

  6. Keum N, Giovannucci E. Vitamin D supplements and cancer incidence and mortality: a meta-analysis. Br J Cancer. 2014;111(5):976–80. https://doi.org/10.1038/bjc.2014.294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Grant WB. 25-Hydroxyvitamin D and breast cancer, colorectal cancer, and colorectal adenomas: case-control versus nested case-control studies. Anticancer Res. 2015;35(2):1153–60.

    CAS  PubMed  Google Scholar 

  8. Maalmi H, Walter V, Jansen L, Chang-Claude J, Owen RW, Ulrich A, et al. Relationship of very low serum 25-hydroxyvitamin D3 levels with long-term survival in a large cohort of colorectal cancer patients from Germany. Eur J Epidemiol. 2017;32(11):961–71. https://doi.org/10.1007/s10654-017-0298-z.

    Article  CAS  PubMed  Google Scholar 

  9. Feng Q, Zhang H, Dong Z, Zhou Y, Ma J. Circulating 25-hydroxyvitamin D and lung cancer risk and survival: a dose-response meta-analysis of prospective cohort studies. Medicine. 2017;96(45):e8613. https://doi.org/10.1097/MD.0000000000008613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weinstein SJ, Mondul AM, Yu K, Layne TM, Abnet CC, Freedman ND, et al. Circulating 25-hydroxyvitamin D up to 3 decades prior to diagnosis in relation to overall and organ-specific cancer survival. Eur J Epidemiol. 2018;33(11):1087–99. https://doi.org/10.1007/s10654-018-0428-2.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Grant WB, Boucher BJ, Bhattoa HP, Lahore H. Why vitamin D clinical trials should be based on 25-hydroxyvitamin D concentrations. J Steroid Biochem Mol Biol. 2018;177:266–9. https://doi.org/10.1016/j.jsbmb.2017.08.009.

    Article  CAS  PubMed  Google Scholar 

  12. Goulao B, Stewart F, Ford JA, MacLennan G, Avenell A. Cancer and vitamin D supplementation: a systematic review and meta-analysis. Am J Clin Nutr. 2018;107(4):652–63. https://doi.org/10.1093/ajcn/nqx047.

    Article  PubMed  Google Scholar 

  13. Zhang X, Niu W. An updated meta-analysis of randomized controlled trials on vitamin D supplement and cancer incidence and mortality (2018). https://ssrn.com/abstract=3273157.

  14. Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376(9736):180–8. https://doi.org/10.1016/S0140-6736(10)60588-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ong JS, Cuellar-Partida G, Lu Y, Fasching PA, Hein A, Burghaus S, et al. Association of vitamin D levels and risk of ovarian cancer: a Mendelian randomization study. Int J Epidemiol. 2016;45(5):1619–30. https://doi.org/10.1093/ije/dyw207.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang X, Dimou NL, Al-Dabhani K, Lewis SJ, Martin RM, Haycock PC, et al. Circulating vitamin D concentrations and risk of breast and prostate cancer: a Mendelian randomization study. Int J Epidemiol. 2018. https://doi.org/10.1093/ije/dyy284.

  17. Ong JS, Gharahkhani P, An J, Law MH, Whiteman DC, Neale RE, et al. Vitamin D and overall cancer risk and cancer mortality: a Mendelian randomization study. Hum Mol Genet. 2018;27(24):4315–22. https://doi.org/10.1093/hmg/ddy307.

    Article  CAS  PubMed  Google Scholar 

  18. Afzal S, Brondum-Jacobsen P, Bojesen SE, Nordestgaard BG. Genetically low vitamin D concentrations and increased mortality: Mendelian randomisation analysis in three large cohorts. BMJ. 2014;349:g6330. https://doi.org/10.1136/bmj.g6330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grant WB. Effect of interval between serum draw and follow-up period on relative risk of cancer incidence with respect to 25-hydroxyvitamin D level: implications for meta-analyses and setting vitamin D guidelines. Dermato-endocrinology. 2011;3(3):199–204. https://doi.org/10.4161/derm.3.3.15364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. •• Garland CF, Gorham ED. Dose-response of serum 25-hydroxyvitamin D in association with risk of colorectal cancer: a meta-analysis. J Steroid Biochem Mol Biol. 2017;168:1–8. https://doi.org/10.1016/j.jsbmb.2016.12.003 Provides additional evidence that colorecal cancer indicence is inversly correlated with 25(OH)D.

    Article  CAS  PubMed  Google Scholar 

  21. •• McDonnell SL, Baggerly CA, French CB, Baggerly LL, Garland CF, Gorham ED, et al. Breast cancer risk markedly lower with serum 25-hydroxyvitamin D concentrations >/=60 vs <20 ng/ml (150 vs 50 nmol/L): pooled analysis of two randomized trials and a prospective cohort. PloS One. 2018;13(6):e0199265. https://doi.org/10.1371/journal.pone.0199265 An important observational study based on vitamin D supplementation and measurement of 25(OH)D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. •• Madden JM, Duffy MJ, Zgaga L, Bennett K. Trends in vitamin D supplement use in a general female and breast cancer population in Ireland: a repeated cross-sectional study. PloS One. 2018;13(12):e0209033. https://doi.org/10.1371/journal.pone.0209033 Provides additional support that vitamin D supplementation improves cancer survival rates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Devesa SS, Grauman DJ, Blot WJ, Pennello GA, Hoover RN, Fraumeni JFJ. Atlas of cancer mortality in the United States, 1950-1994. NIH Publication No 99-4564 1999.

  24. Travis RC, Perez-Cornago A, Appleby PN, Albanes D, Joshu CE, Lutsey PL, et al. A collaborative analysis of individual participant data from 19 prospective studies assesses circulating vitamin D and prostate cancer risk. Cancer Res. 2019;79(1):274–85. https://doi.org/10.1158/0008-5472.CAN-18-2318.

    Article  CAS  PubMed  Google Scholar 

  25. DeSantis CE, Siegel RL, Sauer AG, Miller KD, Fedewa SA, Alcaraz KI, et al. Cancer statistics for African Americans, 2016: progress and opportunities in reducing racial disparities. CA Cancer J Clin. 2016;66(4):290–308. https://doi.org/10.3322/caac.21340.

    Article  PubMed  Google Scholar 

  26. •• Batai K, Murphy AB, Ruden M, Newsome J, Shah E, Dixon MA, et al. Race and BMI modify associations of calcium and vitamin D intake with prostate cancer. BMC Cancer. 2017;17(1):64. https://doi.org/10.1186/s12885-017-3060-8 Provides additional information to help understand the roles of vitamin D and calcium in risk of prostate cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fedirko V, Duarte-Salles T, Bamia C, Trichopoulou A, Aleksandrova K, Trichopoulos D, et al. Prediagnostic circulating vitamin D levels and risk of hepatocellular carcinoma in European populations: a nested case-control study. Hepatology. 2014;60(4):1222–30. https://doi.org/10.1002/hep.27079.

    Article  CAS  PubMed  Google Scholar 

  28. Budhathoki S, Hidaka A, Yamaji T, Sawada N, Tanaka-Mizuno S, Kuchiba A, et al. Plasma 25-hydroxyvitamin D concentration and subsequent risk of total and site specific cancers in Japanese population: large case-cohort study within Japan public health center-based prospective study cohort. BMJ. 2018;360:k671. https://doi.org/10.1136/bmj.k671.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhao J, Wang H, Zhang Z, Zhou X, Yao J, Zhang R, et al. Vitamin D deficiency as a risk factor for thyroid cancer: a meta-analysis of case-control studies. Nutrition. 2019;57:5–11. https://doi.org/10.1016/j.nut.2018.04.015.

    Article  CAS  PubMed  Google Scholar 

  30. Deuster E, Jeschke U, Ye Y, Mahner S, Czogalla B. Vitamin D and VDR in gynecological cancers-a systematic review. Int J Mol Sci. 2017;18(11). https://doi.org/10.3390/ijms18112328.

  31. Guo H, Guo J, Xie W, Yuan L, Sheng X. The role of vitamin D in ovarian cancer: epidemiology, molecular mechanism and prevention. J Ovarian Res. 2018;11(1):71. https://doi.org/10.1186/s13048-018-0443-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang X, Huang X-Z, Chen W-J, Wu J, Chen Y, Wu C-C, et al. Plasma 25-hydroxyvitamin D levels, vitamin D intake, and pancreatic risk or mortality: a meta-analysis. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.18888.

  33. •• McDonnell SL, Baggerly C, French CB, Baggerly LL, Garland CF, Gorham ED, et al. Serum 25-hydroxyvitamin D concentrations >/=40 ng/ml are associated with >65% lower cancer risk: pooled analysis of randomized trial and prospective cohort study. PloS One. 2016;11(4):e0152441. https://doi.org/10.1371/journal.pone.0152441 An important observational study based on vitamin D supplementation and measurement of 25(OH)D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cheney CP, Thorand B, Huth C, Berger K, Peters A, Seifert-Klauss V, et al. The association between serum 25-hydroxyvitamin D and cancer risk: results from the prospective KORA F4 study. Oncol Res Treat. 2018;41(3):117–21. https://doi.org/10.1159/000485512.

    Article  CAS  PubMed  Google Scholar 

  35. •• Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019;380(1):33–44. https://doi.org/10.1056/NEJMoa1809944 The largest vitamin D RCT to date, with important findings from secondary analyses buried in the tables.

    Article  CAS  PubMed  Google Scholar 

  36. Drincic AT, Armas LA, Van Diest EE, Heaney RP. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring). 2012;20(7):1444–8. https://doi.org/10.1038/oby.2011.404.

    Article  CAS  Google Scholar 

  37. Scott JF, Das LM, Ahsanuddin S, Qiu Y, Binko AM, Traylor ZP, et al. Oral vitamin D rapidly attenuates inflammation from sunburn: an interventional study. J Invest Dermatol. 2017;137(10):2078–86. https://doi.org/10.1016/j.jid.2017.04.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fleet JC, DeSmet M, Johnson R, Li Y. Vitamin D and cancer: a review of molecular mechanisms. Biochem J. 2012;441(1):61–76. https://doi.org/10.1042/BJ20110744.

    Article  CAS  PubMed  Google Scholar 

  39. Wang G, Lei L, Zhao X, Zhang J, Zhou M, Nan K. Calcitriol inhibits cervical cancer cell proliferation through downregulation of HCCR1 expression. Oncol Res. 2014;22(5–6):301–9. https://doi.org/10.3727/096504015X14424348425991.

    Article  PubMed  Google Scholar 

  40. Jensen SS, Madsen MW, Lukas J, Binderup L, Bartek J. Inhibitory effects of 1alpha,25-dihydroxyvitamin D(3) on the G(1)-S phase-controlling machinery. Mol Endocrinol. 2001;15(8):1370–80. https://doi.org/10.1210/mend.15.8.0673.

    Article  CAS  PubMed  Google Scholar 

  41. Bao BY, Hu YC, Ting HJ, Lee YF. Androgen signaling is required for the vitamin D-mediated growth inhibition in human prostate cancer cells. Oncogene. 2004;23(19):3350–60. https://doi.org/10.1038/sj.onc.1207461.

    Article  CAS  PubMed  Google Scholar 

  42. Campbell MJ, Gombart AF, Kwok SH, Park S, Koeffler HP. The anti-proliferative effects of 1alpha, 25(OH)2D3 on breast and prostate cancer cells are associated with induction of BRCA1 gene expression. Oncogene. 2000;19(44):5091–7. https://doi.org/10.1038/sj.onc.1203888.

    Article  CAS  PubMed  Google Scholar 

  43. Salehi-Tabar R, Nguyen-Yamamoto L, Tavera-Mendoza LE, Quail T, Dimitrov V, An BS, et al. Vitamin D receptor as a master regulator of the c-MYC/MXD1 network. Proc Natl Acad Sci U S A. 2012;109(46):18827–32. https://doi.org/10.1073/pnas.1210037109.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bi X, Shi Q, Zhang H, Bao Y, Hu D, Pohl N, et al. c-Jun NH2-teminal kinase 1 interacts with vitamin D receptor and affects vitamin D-mediated inhibition of cancer cell proliferation. J Steroid Biochem Mol Biol. 2016;163:164–72. https://doi.org/10.1016/j.jsbmb.2016.05.009.

    Article  CAS  PubMed  Google Scholar 

  45. Diaz GD, Paraskeva C, Thomas MG, Binderup L, Hague A. Apoptosis is induced by the active metabolite of vitamin D3 and its analogue EB1089 in colorectal adenoma and carcinoma cells: possible implications for prevention and therapy. Cancer Res. 2000;60(8):2304–12.

    CAS  PubMed  Google Scholar 

  46. Baudet C, Chevalier G, Chassevent A, Canova C, Filmon R, Larra F, et al. 1,25-Dihydroxyvitamin D3 induces programmed cell death in a rat glioma cell line. J Neurosci Res. 1996;46(5):540–50. https://doi.org/10.1002/(SICI)1097-4547(19961201)46:5<540::AID-JNR3>3.0.CO;2-J.

    Article  CAS  PubMed  Google Scholar 

  47. Kasiappan R, Shen Z, Tse AK, Jinwal U, Tang J, Lungchukiet P, et al. 1,25-Dihydroxyvitamin D3 suppresses telomerase expression and human cancer growth through microRNA-498. J Biol Chem. 2012;287(49):41297–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. •• Bandera Merchan B, Morcillo S, Martin-Nunez G, Tinahones FJ, Macias-Gonzalez M. The role of vitamin D and VDR in carcinogenesis: through epidemiology and basic sciences. J Steroid Biochem Mol Biol. 2017;167:203–18. https://doi.org/10.1016/j.jsbmb.2016.11.020 An excellent review of the roles of vitamin D and VDR in carcinogenesis.

    Article  CAS  PubMed  Google Scholar 

  49. Multhoff G, Molls M, Radons J. Chronic inflammation in cancer development. Front Immunol. 2011;2:98. https://doi.org/10.3389/fimmu.2011.00098.

    Article  PubMed  Google Scholar 

  50. Grivennikov SI, Karin M. Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev. 2010;20(1):65–71. https://doi.org/10.1016/j.gde.2009.11.004.

    Article  CAS  PubMed  Google Scholar 

  51. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90. https://doi.org/10.1016/j.cell.2009.11.007.

    Article  CAS  PubMed  Google Scholar 

  52. Ancrile B, Lim KH, Counter CM. Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev. 2007;21(14):1714–9. https://doi.org/10.1101/gad.1549407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fujiwaki R, Iida K, Kanasaki H, Ozaki T, Hata K, Miyazaki K. Cyclooxygenase-2 expression in endometrial cancer: correlation with microvessel count and expression of vascular endothelial growth factor and thymidine phosphorylase. Hum Pathol. 2002;33(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  54. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kappaB as the matchmaker. Nat Immunol. 2011;12(8):715–23. https://doi.org/10.1038/ni.2060.

    Article  CAS  PubMed  Google Scholar 

  55. Aggarwal BB, Gehlot P. Inflammation and cancer: how friendly is the relationship for cancer patients? Curr Opin Pharmacol. 2009;9(4):351–69. https://doi.org/10.1016/j.coph.2009.06.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shchors K, Shchors E, Rostker F, Lawlor ER, Brown-Swigart L, Evan GI. The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes Dev. 2006;20(18):2527–38. https://doi.org/10.1101/gad.1455706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. Nat Rev Cancer. 2014;14(5):342–57. https://doi.org/10.1038/nrc3691.

    Article  CAS  PubMed  Google Scholar 

  58. •• Jeon SM, Shin EA. Exploring vitamin D metabolism and function in cancer. Exp Mol Med. 2018;50(4):20. https://doi.org/10.1038/s12276-018-0038-9 A very good recent review.

    Article  CAS  PubMed Central  Google Scholar 

  59. Nonn L, Peng L, Feldman D, Peehl DM. Inhibition of p38 by vitamin D reduces interleukin-6 production in normal prostate cells via mitogen-activated protein kinase phosphatase 5: implications for prostate cancer prevention by vitamin D. Cancer Res. 2006;66(8):4516–24. https://doi.org/10.1158/0008-5472.CAN-05-3796.

    Article  CAS  PubMed  Google Scholar 

  60. Bao BY, Yeh SD, Lee YF. 1alpha,25-dihydroxyvitamin D3 inhibits prostate cancer cell invasion via modulation of selective proteases. Carcinogenesis. 2006;27(1):32–42. https://doi.org/10.1093/carcin/bgi170.

    Article  CAS  PubMed  Google Scholar 

  61. Kaler P, Augenlicht L, Klampfer L. Macrophage-derived IL-1beta stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D3. Oncogene. 2009;28(44):3892–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. •• Liu W, Zhang L, Xu HJ, Li Y, Hu CM, Yang JY, et al. The anti-inflammatory effects of vitamin D in tumorigenesis. Int J Mol Sci. 2018;19(9). https://doi.org/10.3390/ijms19092736.

  63. Ma Y, Johnson CS, Trump DL. Mechanistic insights of vitamin D anticancer effects. Vitam Horm. 2016;100:395–431. https://doi.org/10.1016/bs.vh.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  64. Ma Y, Yu WD, Su B, Seshadri M, Luo W, Trump DL, et al. Regulation of motility, invasion, and metastatic potential of squamous cell carcinoma by 1alpha,25-dihydroxycholecalciferol. Cancer. 2013;119(3):563–74. https://doi.org/10.1002/cncr.27531.

    Article  CAS  PubMed  Google Scholar 

  65. Alvarez-Dolado M, Gonzalez-Sancho JM, Navarro-Yubero C, Garcia-Fernandez LF, Munoz A. Retinoic acid and 1,25-dihydroxyvitamin D3 inhibit tenascin-C expression in rat glioma C6 cells. J Neurosci Res. 1999;58(2):293–300.

    Article  CAS  PubMed  Google Scholar 

  66. Gonzalez-Sancho JM, Alvarez-Dolado M, Munoz A. 1,25-Dihydroxyvitamin D3 inhibits tenascin-C expression in mammary epithelial cells. FEBS Lett. 1998;426(2):225–8.

    Article  CAS  PubMed  Google Scholar 

  67. Vanoirbeek E, Eelen G, Verlinden L, Carmeliet G, Mathieu C, Bouillon R, et al. PDLIM2 expression is driven by vitamin D and is involved in the pro-adhesion, and anti-migration and -invasion activity of vitamin D. Oncogene. 2014;33(15):1904–11. https://doi.org/10.1038/onc.2013.123.

    Article  CAS  PubMed  Google Scholar 

  68. Garimella R, Tadikonda P, Tawfik O, Gunewardena S, Rowe P, Van Veldhuizen P. Vitamin D impacts the expression of Runx2 target genes and modulates inflammation, oxidative stress and membrane vesicle biogenesis gene networks in 143B osteosarcoma cells. Int J Mol Sci. 2017;18(3). https://doi.org/10.3390/ijms18030642.

  69. •• Tavera-Mendoza LE, Westerling T, Libby E, Marusyk A, Cato L, Cassani R, et al. Vitamin D receptor regulates autophagy in the normal mammary gland and in luminal breast cancer cells. Proc Natl Acad Sci U S A. 2017;114(11):E2186–E94. https://doi.org/10.1073/pnas.1615015114 Shows how vitamin D regulates autophagy in breast cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dimitrov V, Bouttier M, Boukhaled G, Salehi-Tabar R, Avramescu RG, Memari B, et al. Hormonal vitamin D up-regulates tissue-specific PD-L1 and PD-L2 surface glycoprotein expression in humans but not mice. J Biol Chem. 2017;292(50):20657–68. https://doi.org/10.1074/jbc.M117.793885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ma Y, Trump DL, Johnson CS. Vitamin D in combination cancer treatment. J Cancer. 2010;1:101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu WD, Ma Y, Flynn G, Muindi JR, Kong RX, Trump DL, et al. Calcitriol enhances gemcitabine anti-tumor activity in vitro and in vivo by promoting apoptosis in a human pancreatic carcinoma model system. Cell Cycle. 2010;9(15):3022–9. https://doi.org/10.4161/cc.9.15.12381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ma Y, Yu WD, Trump DL, Johnson CS. 1,25D3 enhances antitumor activity of gemcitabine and cisplatin in human bladder cancer models. Cancer. 2010;116(13):3294–303. https://doi.org/10.1002/cncr.25059.

    Article  CAS  PubMed  Google Scholar 

  74. Ma Y, Yu WD, Hershberger PA, Flynn G, Kong RX, Trump DL, et al. 1alpha,25-Dihydroxyvitamin D3 potentiates cisplatin antitumor activity by p73 induction in a squamous cell carcinoma model. Mol Cancer Ther. 2008;7(9):3047–55. https://doi.org/10.1158/1535-7163.MCT-08-0243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William B. Grant.

Ethics declarations

Conflict of Interest

William B. Grant has received research funding from Bio-Tech Pharmacal, Inc. (Fayetteville, AR).

Meis Moukayed declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, W.B., Moukayed, M. Vitamin D3 from Ultraviolet-B Exposure or Oral Intake in Relation to Cancer Incidence and Mortality. Curr Nutr Rep 8, 203–211 (2019). https://doi.org/10.1007/s13668-019-0262-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-019-0262-5

Keywords

Navigation