Skip to main content

Advertisement

Log in

Neuroimaging Biomarkers of Caloric Restriction on Brain Metabolic and Vascular Functions

  • Neurological Disease and Cognitive Function (G Logroscino, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Non-invasive neuroimaging methods have been developed as powerful tools for identifying in vivo brain functions for studies in humans and animals. Here, we review the imaging biomarkers that are being used to determine the changes within brain metabolic and vascular functions induced by caloric restriction (CR) and their potential usefulness for future studies with dietary interventions in humans.

Recent Findings

CR causes an early shift in brain metabolism of glucose to ketone bodies and enhances ATP production, neuronal activity, and cerebral blood flow (CBF). With age, CR preserves mitochondrial activity, neurotransmission, CBF, and spatial memory. CR also reduces anxiety in aging mice. Neuroimaging studies in humans show that CR restores abnormal brain activity in the amygdala of women with obesity and enhances brain connectivity in old adults.

Summary

Neuroimaging methods have excellent translational values and can be widely applied in future studies to identify dietary effects on brain functions in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Everson-Rose SA, Ryan JP. Diabetes, obesity, and the brain: new developments in biobehavioral medicine. Psychosom Med. 2015;77(6):612–5.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bangen KJ et al. APOE genotype modifies the relationship between midlife vascular risk factors and later cognitive decline. J Stroke Cerebrovasc Dis. 2013;22(8):1361–9.

    Article  PubMed  Google Scholar 

  3. Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12(12):723–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ebmeier KP et al. Cerebral perfusion correlates of depressed mood. Br J Psychiatry. 1997;170:77–81.

    Article  CAS  PubMed  Google Scholar 

  5. Gur RC et al. The effect of anxiety on cortical cerebral blood flow and metabolism. J Cereb Blood Flow Metab. 1987;7(2):173–7.

    Article  CAS  PubMed  Google Scholar 

  6. Park, J. and B. Moghaddam, Impact of anxiety on prefrontal cortex encoding of cognitive flexibility. Neuroscience, 2016

  7. Bell RD et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature. 2012;485(7399):512–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Reiman EM et al. Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: a foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc Natl Acad Sci U S A. 2001;98(6):3334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bookheimer SY et al. Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med. 2000;343(7):450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cunnane S et al. Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition. 2011;27(1):3–20.

    Article  CAS  PubMed  Google Scholar 

  11. Stranahan AM, Mattson MP. Metabolic reserve as a determinant of cognitive aging. J Alzheimers Dis. 2012;30 Suppl 2:S5–13.

    PubMed  PubMed Central  Google Scholar 

  12. Redman LM et al. Effect of caloric restriction in non-obese humans on physiological, psychological and behavioral outcomes. Physiol Behav. 2008;94(5):643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Colman RJ et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science. 2009;325(5937):201–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi JS, Choi KM, Lee CK. Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2011;409(2):308–14.

    Article  CAS  PubMed  Google Scholar 

  15. Rahat O, Maoz N, Cohen HY. Multiple pathways regulating the calorie restriction response in yeast. J Gerontol A Biol Sci Med Sci. 2011;66(2):163–9.

    Article  PubMed  Google Scholar 

  16. Larson-Meyer DE et al. Effect of calorie restriction with or without exercise on insulin sensitivity, beta-cell function, fat cell size, and ectopic lipid in overweight subjects. Diabetes Care. 2006;29(6):1337–44.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Baumeier C et al. Caloric restriction and intermittent fasting alter hepatic lipid droplet proteome and diacylglycerol species and prevent diabetes in NZO mice. Biochim Biophys Acta. 2015;1851(5):566–76.

    Article  CAS  PubMed  Google Scholar 

  18. Thrasivoulou C et al. Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. Aging Cell. 2006;5(3):247–57.

    Article  CAS  PubMed  Google Scholar 

  19. Lee J et al. Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci. 2000;15(2):99–108.

    Article  CAS  PubMed  Google Scholar 

  20. Lee J, Seroogy KB, Mattson MP. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem. 2002;80(3):539–47.

    Article  CAS  PubMed  Google Scholar 

  21. Agarwal S et al. Caloric restriction augments ROS defense in S. cerevisiae, by a Sir2p independent mechanism. Free Radic Res. 2005;39(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  22. Gong X et al. Antioxidant enzyme activities in lens, liver and kidney of calorie restricted Emory mice. Mech Ageing Dev. 1997;99(3):181–92.

    Article  CAS  PubMed  Google Scholar 

  23. Merry BJ. Oxidative stress and mitochondrial function with aging—the effects of calorie restriction. Aging Cell. 2004;3(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  24. Sreekumar R et al. Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle. Am J Physiol Endocrinol Metab. 2002;283(1):E38–43.

    Article  CAS  PubMed  Google Scholar 

  25. Mattson MP, Wan R. Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem. 2005;16(3):129–37.

    Article  CAS  PubMed  Google Scholar 

  26. Gomez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci. 2008;9(7):568–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park SY et al. Calorie restriction improves whole-body glucose disposal and insulin resistance in association with the increased adipocyte-specific GLUT4 expression in Otsuka Long-Evans Tokushima fatty rats. Arch Biochem Biophys. 2005;436(2):276–84.

    Article  CAS  PubMed  Google Scholar 

  28. Duan W, Ross CA. Potential therapeutic targets for neurodegenerative diseases: lessons learned from calorie restriction. Curr Drug Targets. 2010;11(10):1281–92.

    Article  CAS  PubMed  Google Scholar 

  29. •• Lin AL et al. Multimodal MRI neuroimaging biomarkers for cognitive normal adults, amnestic mild cognitive impairment, and Alzheimer’s disease. Neurol Res Int. 2012;2012:907409. A detailed review of using MRI neuroimaging makers to identify different patterns of brain functions between normal aging, mild cognitive impairment, and Alzheimer’s Disease.

    Article  PubMed  Google Scholar 

  30. •• Lin AL, Rothman DL. What have novel imaging techniques revealed about metabolism in the aging brain? Future Neurology. 2014;9(3):341–54. A comprehensive review of using multi-modal neuroimaging biomakers to identify brain metabolic changes with age.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lin AL et al. Caloric restriction impedes age-related decline of mitochondrial function and neuronal activity. J Cereb Blood Flow Metab. 2014;34(9):1440–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo J, Bakshi V, Lin AL. Early shifts of brain metabolism by caloric restriction preserve white matter integrity and long-term memory in aging mice. Front Aging Neurosci. 2015;7:213.

    PubMed  PubMed Central  Google Scholar 

  33. • Lin AL et al. Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain. Neurobiol Aging. 2015;36(7):2296–303. The original neuroimaging study that shows brain metabolic shift from glucose to ketone bodies utilization in aging rats under caloric restriction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Perluigi M, Di Domenico F, Butterfield DA. mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis. 2015;84:39–49.

    Article  CAS  PubMed  Google Scholar 

  35. Akram M. A focused review of the role of ketone bodies in health and disease. J Med Food. 2013;16(11):965–7.

    Article  CAS  PubMed  Google Scholar 

  36. Chowdhury GM et al. The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo. J Cereb Blood Flow Metab. 2014;34(7):1233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Katewa SD et al. Intramyocellular fatty-acid metabolism plays a critical role in mediating responses to dietary restriction in Drosophila melanogaster. Cell Metab. 2012;16(1):97–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lanza IR et al. Chronic caloric restriction preserves mitochondrial function in senescence without increasing mitochondrial biogenesis. Cell Metab. 2012;16(6):777–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vaishnavi SN et al. Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci U S A. 2010;107(41):17757–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palmer CS et al. Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol. 2015;6:1.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vlassenko AG, Raichle ME. Brain aerobic glycolysis functions and Alzheimer’s disease. Clin Transl Imaging. 2015;3(1):27–37.

    Article  PubMed  Google Scholar 

  42. Vlassenko AG et al. Spatial correlation between brain aerobic glycolysis and amyloid-beta (Abeta) deposition. Proc Natl Acad Sci U S A. 2010;107(41):17763–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cirrito JR et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron. 2005;48(6):913–22.

    Article  CAS  PubMed  Google Scholar 

  44. Mouton PR et al. Caloric restriction attenuates amyloid deposition in middle-aged dtg APP/PS1 mice. Neurosci Lett. 2009;464(3):184–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schafer MJ et al. Reduction of beta-amyloid and gamma-secretase by calorie restriction in female Tg2576 mice. Neurobiol Aging. 2015;36(3):1293–302.

    Article  CAS  PubMed  Google Scholar 

  46. Kastman EK et al. A calorie-restricted diet decreases brain iron accumulation and preserves motor performance in old rhesus monkeys. J Neurosci. 2012;32(34):11897–904.

    Article  CAS  PubMed  Google Scholar 

  47. Wang P, Wang ZY. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer’s disease. Ageing Res Rev. 2016.

  48. Lin A-L et al. Functional neuroimaging: a physiological perspective. Frontiers in Neuroenergetics. 2010;2:5.

    Google Scholar 

  49. Lin AL et al. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc Natl Acad Sci U S A. 2010;107(18):8446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. • Parikh I et al. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Aging (Albany NY). 2016;8(11):2814–26. This study provides evidence that we may use neuroimaging as biomarkers to predict cognitive function and mental health in aging.

    Article  Google Scholar 

  51. Lin AL et al. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J Cereb Blood Flow Metab. 2013;33(9):1412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng C et al. Rapamycin modulates the eNOS vs. shear stress relationship. Cardiovasc Res. 2008;78(1):123–9.

    Article  CAS  PubMed  Google Scholar 

  53. Hasselbalch SG et al. Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia. Am J Physiol. 1996;270(5 Pt 1):E746–51.

    CAS  PubMed  Google Scholar 

  54. Roy M et al. Long-term calorie restriction has minimal impact on brain metabolite and fatty acid profiles in aged rats on a Western-style diet. Neurochem Int. 2013;63(5):450–7.

    Article  CAS  PubMed  Google Scholar 

  55. Sengupta S et al. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature. 2010;468(7327):1100–4.

    Article  CAS  PubMed  Google Scholar 

  56. Blazquez C et al. The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes. J Neurochem. 1999;73(4):1674–82.

    Article  CAS  PubMed  Google Scholar 

  57. Shafique E et al. Oxidative stress improves coronary endothelial function through activation of the pro-survival kinase AMPK. Aging (Albany NY). 2013;5(7):515–30.

    Article  CAS  Google Scholar 

  58. Csiszar A et al. Caloric restriction confers persistent anti-oxidative, pro-angiogenic, and anti-inflammatory effects and promotes anti-aging miRNA expression profile in cerebromicrovascular endothelial cells of aged rats. Am J Physiol Heart Circ Physiol. 2014;307(3):H292–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ungvari Z et al. Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci. 2010;65(10):1028–41.

    Article  PubMed  Google Scholar 

  60. Lynch CD et al. Effects of moderate caloric restriction on cortical microvascular density and local cerebral blood flow in aged rats. Neurobiol Aging. 1999;20(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  61. Fontan-Lozano A et al. Molecular bases of caloric restriction regulation of neuronal synaptic plasticity. Mol Neurobiol. 2008;38(2):167–77.

    Article  CAS  PubMed  Google Scholar 

  62. Mattson MP. The impact of dietary energy intake on cognitive aging. Front Aging Neurosci. 2010;2:5.

    PubMed  PubMed Central  Google Scholar 

  63. Valdez G et al. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci U S A. 2010;107(33):14863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Witte AV et al. Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A. 2009;106(4):1255–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Willette AA et al. Calorie restriction reduces psychological stress reactivity and its association with brain volume and microstructure in aged rhesus monkeys. Psychoneuroendocrinology. 2012;37(7):903–16.

    Article  PubMed  Google Scholar 

  66. Whalley LJ et al. Cerebral correlates of cognitive reserve. Psychiatry Res. 2016;247:65–70.

    Article  PubMed  Google Scholar 

  67. Uh J et al. Validation of VASO cerebral blood volume measurement with positron emission tomography. Magn Reson Med. 2011;65(3):744–9.

    Article  PubMed  Google Scholar 

  68. Herholz K et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage. 2002;17(1):302–16.

    Article  CAS  PubMed  Google Scholar 

  69. Hsieh TC et al. Sex- and age-related differences in brain FDG metabolism of healthy adults: an SPM analysis. J Neuroimaging. 2012;22(1):21–7.

    Article  PubMed  Google Scholar 

  70. Kalpouzos G et al. Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging. 2009;30(1):112–24.

    Article  CAS  PubMed  Google Scholar 

  71. Petit-Taboue MC et al. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage. 1998;7(3):176–84.

    Article  CAS  PubMed  Google Scholar 

  72. Kochunov P et al. Loss of cerebral white matter structural integrity tracks the gray matter metabolic decline in normal aging. NeuroImage. 2009;45(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  73. Peters R. Ageing and the brain. Postgrad Med J. 2006;82(964):84–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dawson GR et al. Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the beta-amyloid precursor protein. Neuroscience. 1999;90(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  75. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32(4):486–510.

    Article  CAS  PubMed  Google Scholar 

  76. Devanand DP et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology. 2007;68(11):828–36.

    Article  CAS  PubMed  Google Scholar 

  77. Boumezbeur F et al. Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 2010;30(1):211–21.

    Article  CAS  PubMed  Google Scholar 

  78. Lynch AM et al. The impact of glial activation in the aging brain. Aging Dis. 2010;1(3):262–78.

    PubMed  PubMed Central  Google Scholar 

  79. Ding F et al. Early decline in glucose transport and metabolism precedes shift to ketogenic system in female aging and Alzheimer’s mouse brain: implication for bioenergetic intervention. PLoS One. 2013;8(11):e79977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Klosinski LP et al. White matter lipids as a ketogenic fuel supply in aging female brain: implications for Alzheimer’s disease. EBioMedicine. 2015;2(12):1888–904.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tachibana H et al. Changing topographic patterns of human cerebral blood flow with age measured by xenon CT. AJR Am J Roentgenol. 1984;142(5):1027–34.

    Article  CAS  PubMed  Google Scholar 

  82. Koike MA et al. Long term changes in phospho-APP and tau aggregation in the 3xTg-AD mice following cerebral ischemia. Neurosci Lett. 2011;495(1):55–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Okonkwo OC et al. Cerebral blood flow is diminished in asymptomatic middle-aged adults with maternal history of Alzheimer’s disease. Cereb Cortex. 2014;24(4):978–88.

    Article  PubMed  Google Scholar 

  84. Kwong KK et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 1992;89(12):5675–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ogawa S et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993;64(3):803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Witte AV et al. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci. 2014;34(23):7862–70.

    Article  CAS  PubMed  Google Scholar 

  87. Jakobsdottir S et al. Acute and short-term effects of caloric restriction on metabolic profile and brain activation in obese, postmenopausal women. Int J Obes (Lond). 2016;40(11):1671–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Ling Lin.

Ethics declarations

Conflict of Interest

Ai-Ling Lin, Ishita Parikh, Jared D. Hoffman, and David Ma declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neurological Disease and Cognitive Function

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, AL., Parikh, I., Hoffman, J.D. et al. Neuroimaging Biomarkers of Caloric Restriction on Brain Metabolic and Vascular Functions. Curr Nutr Rep 6, 41–48 (2017). https://doi.org/10.1007/s13668-017-0187-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-017-0187-9

Keywords

Navigation